Tag Archives: predictability

Sea Ice, Oceanography, and Nature’s Way to Paint

I am going to sea next week boarding the R/V Sikuliaq in Nome, Alaska to sail for 3 days north into the Arctic Ocean. When we arrive in our study area after all this traveling, then we have perhaps 18 days to deploy 20 ocean moorings. I worry that storms and ice will make our lives at sea miserable. So what does a good data scientist do to prepare him or herself? S/he dives into data:

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space.

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space. Slightly darker shades especially in the bottom segment are interpreted as sea ice. The offset in grey scale between top and bottom is caused by me using different numbers for two different data segments to bring the data into a range that varies between 0 and 1.

The image above is my first attempt to determine, if our planned mooring deployment locations are free of sea ice or not. The darker tones of gray are sea ice with the white spots probably thicker or piled-up ridges of rougher sea ice. The speckled gray surface to the north is probably caused by surface waves and other “noise” that are pretty random. There is a data point ever 40 meters in this image. It also helps to compare these very high-resolution ice data with products that the US National Ice Center (NIC) and the National Weather Service provide:

Ice Chart of the Alaska office of the National Weather Service (link)

Ice Chart of the Alaska office of the National Weather Service

The above is a wonderful map for general orientation, but it is not good or detailed enough to navigate a ship through the ice. The two maps agree, however, my patch of ice to the south of the moorings are represented as the orange/green patch on the top right (north-east). The orange means that 70-80% of the area is covered by ice and this ice is thicker than 1.2 meters and thus too thick for our ship to break through, but there are always pathways through ice and those can be found with the 40-m resolution maps.

In summary, on Sept.-29, 2016 all our moorings are in open water, but this can change, if the wind moves this math northward. So we are also watching the winds and here I like the analyses of Government Canada

Surface weather analysis from Government Canada for Oct.-2, 2016.

Surface weather analysis from Government Canada for Oct.-2, 2016. The map of surface pressure is centered on the north pole with Alaska at the bottom, Europe on the top, Greenland on the right, and Siberia on the left.

It shows a very low pressure center over Siberia to the south-west and a high pressure center over Arctic Canada to our north-east. This implies a strong wind to the north in our study area. So the ice edge will move north into our study area. If the High moves westward, we would be golden, but the general circulation at these latitudes are from west to east, that is, the Low over Siberia will win and move eastward strengthening the northward flow. That’s the bad news for us, but we still have almost 2 weeks before we should be in the area to start placing our fancy ocean moorings carefully into the water below the ice.

While this “operational” stuff motivated me to dive into the satellite radar data that can “see” through clouds and fog, I am most excited about the discovery that the radar data from the European Space Agency are easy to use with a little clever ingenuity and a powerful laptop (2.5 MHz Mac PowerBook). For example, this hidden gems appeared in the Chukchi Sea a few days earlier:

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

It is a piece of art, nature’s way to paint the surface of the earth only to destroy this painting the next minute or hour or day to make it all anew. It reminds me of the sand-paintings of some Native American tribes in the South-West of the USA that are washed away the moment they are finished. Here the art is in the painting, just as the pudding is in the eating, and the science is the thinking.

Sea ice and 2016 Arctic field work

The sea ice in the Arctic Ocean is quickly disappearing from coastal areas as we are entering the summer melt season. This year I follow this seasonal event with nervous anticipation, because in October and November we will be out at sea working north of northern Alaska. We plan to deploy a large number of ocean sensors to investigate how sound propagates from the deep Arctic Ocean on to the shallow Chukchi Sea. This figure shows our study area with the ice cover as it was reported yesterday from space:

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Zooming in a little further, I show the coast of Alaska along with 100 and 1000 meter contour of bottom depth over a color map of ice concentrations:

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

My responsibilities in this US Navy-funded project are the seven densely packed blue triangles. They indicate locations where I hope to measure continuously for a year ocean temperature, salinity, and pressure from which to construct sections of speed of sound and how it varies in time and space. I will also measure ice draft as well ice and ocean currents from which to estimate the roughness of the sea ice over time. Sea ice and ocean properties both impact sound propagation from deep to shallow water and vice versa.

A first question: What will the ice be like when we get there? This is the question that has the 40 or so people all working on this project anxiously preparing for the worst, but how can we expect what challenges are to come our way?

Doing my homework, I downloaded from the National Snow and Ice Data Center all gridded maps of ice concentrations that microwave satellites measured almost daily since 1978. Then I crunch the numbers on my laptop with a set of kitchen-sink Unix tools and code snippets such as

set ftp = 'ftp://sidads.colorado.edu'
set dir = 'pub/DATASETS/nsidc0081_nrt_nasateam_seaice/north'
...
wget -r -nd -l1 --no-check-certificate $ftp/$dir/$year/$file

along with fancy and free Fortran and General Mapping Tools to make the maps shown above. With these tools and data I can then calculate how much sea ice covers any area at any time. The result for custom-made mooring area at almost daily resolution gives a quick visual that I use to prepare for our fall 2016 expedition. The dotted lines in the top panel indicate the dates we are in the area.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

The story here is well-known to anyone interested in Arctic sea ice and climate change, but here it applies to a tiny spec of ocean between the 100 and 1000 meter isobath where we plan to deployed ocean sensors for a year in the fall of 2016. For the two decades of the last century, the ice cover looks like a crap shoot with 80% ice cover possible any month of the year and ice-free conditions unlikely but possible here or there for a week or two at most. The situation changed dramatically since about 2000. During the last six years our study area has always been free of ice from late August to early October, however, our 2016 expedition is during the transition from ice-free October to generally ice-covered early November, but, I feel, our saving grace is that the sea ice will be thin and mobile. I thus feel that we probably can work comfortable on account of ice for the entire period, but the winds and waves will blow us away …

Weather will be most uncomfortable, because fall is the Pacific storm season. And with little or only thin ice, there will be lots and lots of waves with the ship pitching and rolling and seeking shelter that will challenge us from getting all the work done even with 7 days for bad weather built into our schedule.

I worked in this area on larger ships in 1993, 2003, and in 2004. Here is a photo that Chris Linder of Woods Hole Oceanographic Institution took during a massive storm in the general vicinity in October of 2004. The storm halted all outside work on the 420 feet long USCGC Healy heading into the waves for 42 long and miserable hours:

Icebreaker taking on waves on the stern during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Icebreaker taking on waves on the bow during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Oh, I now also recall that during this four-week expedition we never saw land or the sun. It was always a drizzly gray ocean on a gray horizon. The Arctic Ocean in the fall is an often cruel and inhospitable place with driving freezing rain and fog.

Heartbeat of Ocean and Air of Greenland

While cables are designed at a small company in southern California,while instruments are shipped to friends at the British Antarctic Survey in England, while instrument locations are contemplated by a small group of scientists, technicians, and graduate students, I am also on a journey back in time to check up on the heart beat of the air we breath and the oceans we sail. The Arctic heartbeat to me is the annual change from the total darkness of polar night to total sunlight of polar day. This cycle, this heartbeat takes a year. There is 24 hours of day in summer the same way that there is 24 hours of night now. Let me first show, however, where we are heading before I look at the heartbeat.

I love making maps and this is a rich and pretty one that shows North America from the top where Petermann Fjord and Glacier are (tiny blue box on left map). The colors are water depths and land elevations. The thick dotted red line is where a very large iceberg from Petermann traveled within a year to reach Newfoundland. Teresa, one of the contributors to my crowd-funding project, sailed up there to Newfoundland to see this iceberg. And she made a movie out this voyage. So, what happens up there in northern Greenland only takes a year, maybe two, to reach our more balmy shores. What happens in Greenland does NOT stay in Greenland. Vegas, Nevada this is not.

Figure1

Now on to the map on the right. This is the tiny blue box made much larger. It looks like a photo, and in a way it is, but a photo taken by a satellite, well, only one “channel” of this specific satellite, the many shades of gray are mine, it is NOT the real color. The glacier is in the bottom right as the white tongue sticking out towards 81 N latitude. Red lines there are water depths of 500 and 1000m. The blue dot in the top-left is where I had to leave an ocean sensor in a shallow bay for 9 years, because we could not get there to retrieve it for 6 years. Lucky for me (well, some smart design helped), the instrument was still there, collecting and recording data that we knew nothing about for 9 long years. It took smart and hardy fishermen from Newfoundland aboard the CCGS Henry Larsen to dangle my sensor out of the icy waters. And here is the heart beat it revealed:

AlertDiscTemp

Top graph is ocean temperature, bottom panel is air temperature nearby. And as you go from left to right, we move forward in time starting in 2002 until the end of 2012 when the last ocean measurements were made. The red lines are a linear trend that represents local (as opposed to global) warming. Both go up which means it gets warmer, but careful, the bottom one for air is no different from a straight line with zero slope meaning no warming. It does go up, you say correctly, but if I do formal statistics, this slope is no different from zero just due to chance. The top curve for the ocean, however, is very different. It does not look different, but the same statistics tell me that the warming is NOT due to chance alone. Oh, in case you wondered, the two dashed lines in the top panel are the temperatures at which seawater freezes and forms ice for the salinity range we see and expect at this embayment. As you add salt to water, it freezes at a lower temperature. This is why we put salt on our roads in winter, it makes the water freeze less fast.

I am a doctor, so here is my conclusion: Ocean heart beat is a little irregular and the trend is not good news for the ice. Air heart beat looks normal, the trends may need watching, but I am not too worried about that just yet. Watch the oceans … that’s where the heat and the action is these days.

Of Moorings, Elephants, Norwegians, and Codswallop

The oceans are cruel, unforgiving, and destructive. Microbes, algae, plankton, fish, and whales all evolved slowly to make the seas their home. We men and women of science and technology race to catch-up Continue reading

Rules of Engagement: Ships, Science, and Democracy

The FS Polarstern will leave port tomorrow night for scientific work between Greenland and Spitsbergen near 79 degrees north latitude about 1200 km or 770 miles from the North Pole. It will be hard work, Continue reading