Tag Archives: NASA

Travels to Greenland in Winter

Waking up after 5 hours on a plane from Baltimore, Maryland to Thule, Greenland large white Pitugfik Gletscher distinguishes itself from the white sea ice by its ragged snout as the plane approaches my new home for the next 6 weeks. I am traveling with 9 midshipmen of the US Naval Academy of which two are women, their 4 professors, and bear guard from Alaska. We will be working and living together for the next 7 days.

Pitugfik Glacier during the early morning hours of Mar.-9, 2017.

A little further along the coast we enter Wolstenholme Fjord where from the plane wide cracks of open water stand out as black against the bluish white horizon. This will be the outer margin of where I plan to work the ice and ocean underneath the next 6 weeks. We need to stay on the shore side of this transition of land-fast to mobile sea ice. I have watched this boundary for the last 4 months with satellite imagery, but seeing with my own eyes is an entire different and humbling experience.

Sea ice near Kap Atholl with heads of open water that separate land-fast ice that does not move from mobile ice.

We land safely at the airport, get our passport stamped by Danish officials, pick up our luggage, and are received by wonderful people working for both NASA and the National Science Foundation. After a hearty lunch of dark rye bread and my beloved pickled herrings christmas arrives in the form of many carefully wrapped packages: I try to find my Arctic clothing that I shipped months before. It is much-needed as the -33 C take your breadth away. I also find the 2,500 lbs of science gear, some of which had arrived directly from Canada after it was ordered Dec.-10, 2016: Without this $22,000 electrical winch, I would be hard pressed to send sensors to the bottom of the ocean and back. Everything appears to be in place and fine, but some acoustic gear is still missing as its large lithium batteries need diplomatic clearances which takes a little longer. Perhaps they will be on the plane that is about to land. There is only 1 flight per week that connects Thule to the US. Hence advance planing is needed and those lithium batteries are not needed until April 6 when Lee and Taylor arrive from Massachusetts.

Where in this pile are my snow boots? Palletized gear on arrival in Thule Greenland.

The next day we put some of our gear out to measure how thick the sea ice is near the coast. While drilling a hole requires power tools, the ice is actually cut by a razor-sharp drill bit that is sensitive to damage when it refuses to cut the ice and no amount of force available can force it through the 3-4 feet of ice we find. We all learn the hard way when we accidentally drill into the frozen sea bed without finding any water. One drill bit down, we only got 2 more and are much, much more careful with it. The remaining drill bits have to last for the next 6 weeks … actually, they do not, because I can change the blades should one bit become dull. [I did not tell this the Naval Academy guys who were doing much of this drilling to support NASA’s Operation IceBridge.]

And on this note, I am heading out to sea at 7:59 am to drill one more hole to prepare for a first mooring deployment. A wooden stick without sensors attached will simulate a mooring that I want to recover after it is frozen in. More later …

P.S.: More photos and stories on this week’s adventures can be found at

https://www.facebook.com/USNAPolarScienceProgram/

Oceanography below Petermann Gletscher for 400 Days

Ocean data from 810 meters below sea level under one of Greenland’s last remaining ice shelves arrives every 3 hours at my laptop via a 3-conductor copper cable that passes through 100 meter thick ice to connect to a weather station that via a satellite phone system connects to the rest of the world. This Ocean-Weather station on the floating section of Petermann Gletscher has reported for 400 days today. I am still amazed, stunned, and in awe that this works.

The station started 20th August of 2015 as a small part of a larger joint US-Swedish expedition to North Greenland after friends at the British Antarctic Survey drilled holes through the Empire-State-Building thick ice shelf. It is powered by two 12 Volt car batteries that are recharged by two solar panels. When the sun is down, the car batteries run the station as in winter when temperatures reached -46 C. When the sun is up, the solar cells run the station and top off the batteries. The voltage during the last 400 days shows the “health” of the station:

Battery voltage at the Petermann Ocean-Weather Station from Aug.-20, 2015 through  Sept.-23, 2016. The polar night is indicated by slowly declining voltage near 12 V while during the polar day voltage is near 14 V with oscillations in spring and fall during the transition from 24 hours of darkness to 24 hours of sun light.

Battery voltage at the Petermann Ocean-Weather Station from Aug.-20, 2015 through Sept.-23, 2016. The polar night is indicated by slowly declining voltage near 12 V while during the polar day voltage is near 14 V with oscillations in spring and fall during the transition from 24 hours of darkness to 24 hours of sun light.

There is an unexplained outage without data from February 12-25 (Day 175-189) which happened a day after the first data logger shut down completely without ever recovering. Our station has 2 data loggers: A primary unit controls 2 ocean sensors, atmospheric sensors, and the Iridium satellite communication. The secondary unit controls 3 ocean sensors and the GPS that records the moving glacier. Remote access to the secondary logger is via the primary, however, each logger has its own processors, computer code, and back-up memory card.

Inside of University of Delaware command and control of five ocean sensors and surface weather station. Two data loggers are stacked above each other on the left.

Inside of University of Delaware command and control of five ocean sensors and surface weather station. Two data loggers are stacked above each other on the left.

The primary logger failed 11th February 2016 when we received our last data via Iridium satellites until Keith Nicholls and I visited the station 27th and 28th August 2016 via helicopter from Thule, Greenland. Since I could not figure out what went wrong sitting on the ice with the helicopter waiting, I spent a long night without sleep to swap the data logger with a new and tested unit. I rewired sensors to new data logger, switched the Iridium modem, transceiver, and antenna, changed the two car batteries, and now both data loggers with all five ocean sensors have since reported faithfully every 3 hours as scheduled as seen at

http://ows.udel.edu

Lets hope that the station will keep going like as it does now.

The major discovery we made with the ocean data are large and pronounced pulses of fresher and colder melt waters that swosh past our sensors about 5 and 25 meters under the glacier ice. These pulses arrive about every 14 days and this time period provides a clue on what may cause them – tides. A first descriptive report will appear in December in the peer-reviewed journal Oceanography. Our deeper sensors also record increasingly warmer waters, that is, we now see warm (and salty) waters under the glacier that in 2015 we saw more than 100 km to the west in Nares Strait. This suggests that the ocean under the glacier is strongly coupled to the ambient ocean outside the fjord and vice versa. More on this in a separate future posting.

Time series of salinity (top) and potential temperature (bottom) from four ocean sensors deployed under the ice shelf of Petermann Gletscher from 20th of August 2015 through 11th of February 2016. Temperature and salinity scales are inverted to emphasize the vertical arrangements of sensors deployed at 95m (black), 115 (red), 300 m, and 450 m (blue) below sea level. Note the large fortnightly oscillations under the ice shelf at 95 and 115 m depth in the first half of the record. [From Muenchow et al., 2016]

Time series of salinity (top) and potential temperature (bottom) from four ocean sensors deployed under the ice shelf of Petermann Gletscher from 20th of August 2015 through 11th of February 2016. Temperature and salinity scales are inverted in order to emphasize the vertical arrangements of sensors deployed at 95m (black), 115 (red), 300 m, and 450 m (blue) below sea level. Note the large fortnightly oscillations under the ice shelf at 95 and 115 m depth in the first half of the record. [From Muenchow et al., 2016]

P.S.: The installation and year-1 analyses were supported by a grants from NASA and the Jet Propulsion Laboratory, respectively, while the current work is supported by NSF for the next 3 years. Views and opinions are mine and do not reflect those of the funding agencies.

The Ice Shelf of Petermann Gletscher, North Greenland and its ocean below: Introductions

“In 1921 owing to starvation I had to go directly from Cape Heiberg-Juergensen to our cache at Cape Agassiz … during this journey the greater part of the glacier was mapped.” — Lauge Koch, 1928

Traveling by dog sled, Geologist Lauge Koch mapped Petermann Gletscher in 1921 after he and three Inuit companions crossed it on a journey to explore northern North Greenland. They discovered and named Steensby, Ryder, and H.C. Ostenfeld Glaciers that all had floating ice shelves as does Petermann (Ahnert, 1963; Higgins, 1990). In Figure 1 I reproduce the historic map of Koch (1928) that also contains his track in in 1917 and 1921 both across the terminus and across its upstream ice stream. In 1921 all four starved travelers returned safely after living off the land. Four years earlier, however, they were not so lucky: two traveling companions died on a similar journey in 1917 (Rasmussen, 1923).

Maps of Petermann Gletscher by Lauge Koch from 1917 and 1921 dog sleds and 2015 from MODIS-Terra.

Only 20 years after Lauge Koch’s expeditions by dog sled, air planes and radar arrived in North Greenland with the onset of the Cold War. The Arctic Ocean to the north became a battle space along with its bordering land and ice masses of northern Greenland, Ellesmere Island, Canada, Alaska, and Siberia. Weather stations were established in 1947 at Eureka by aircraft and in 1950 at Alert by US icebreaker to support military aviation (Johnson, 1990). In 1951 more than 12,000 US military men and women descended on a small trading post called Thule that Knud Rasmussen and Peter Freuchen had established 40 years earlier to support their own and Lauge Koch’s dog-sled expeditions across Greenland (Freuchen, 1935). “Operation Blue Jay” built Thule Air Force Base as a forward station for fighter jets, nuclear armed bombers, and early warning radar systems. The radars were to detect ballistic missiles crossing the Arctic Ocean from Eurasia to North America while bombers were to retaliate in case of a nuclear attack from the Soviet Union.

An F-102 jet of the 332d Fighter-Interceptor Squadron at Thule AFB in 1960. [Credit: United States Air Force]

An F-102 jet of the 332d Fighter-Interceptor Squadron at Thule AFB in 1960. [Credit: United States Air Force]

About another 60 years later, the jets, the bombers, and the communist threat were all gone, but the Thule Air Force Base is still there as the gateway to North Greenland. It is also the only deep water port within a 1,000 mile radius where US, Canadian, Danish, and Swedish ships all stop to receive and discharge their crews and scientists. Since 2009 Thule AFB also serves as the northern base for annual Operation IceBridge flights over North Greenland to map the changing ice sheets and glaciers.

The establishment of military weather stations and airfields in the high Arctic coincided with the discovery of massive ice islands drifting freely in the Arctic Ocean. On Aug.-14, 1946 airmen of the 46th Strategic Reconnaissance Squadron of the US Air Force discovered a moving ice islands with an area of about 200 square that was kept secret until Nov.-1950 (Koenig et al, 1950). Most of these ice islands originated from rapidly disintegrating ice shelves to the north of Ellesmere island (Jeffries, 1992; Copland 2007), however, the first historical description of an ice islands from Petermann Gletscher came from Franz Boas in 1883 who established a German station in Cumberland Sound at 65 N latitude and 65 W longitude as part of the first Polar Year.

Petermann Ice Island of 2012 at the entrance of Petermann Fjord. The view is to the north-west with Ellesmere Island, Canada in the background. [Photo Credit: Jonathan Poole, CCGS Henry Larsen]

Petermann Ice Island of 2012 at the entrance of Petermann Fjord. The view is to the north-west with Ellesmere Island, Canada in the background. [Photo Credit: Jonathan Poole, CCGS Henry Larsen]

Without knowing the source of the massive tabular iceberg the German physicist Franz Boas reported detailed measurements of ice thickness, extend, and undulating surface features of an ice island in Cumberland Sound that all match scales and characteristics of Petermann Gletscher (Boas, 1885). These characteristics were first described by Dr. Richard Croppinger, surgeon of a British Naval expedition in 1874/75 (Nares, 1876). Dr. Croppinger identified the terminus of Petermann Gletscher as a floating ice shelf when he noticed vertical tidal motions of the glacier from sextant measurements a fixed point (Nares, 1876). His observations on tides were the last until a group of us deployed 3 fancy GPS units on the glacier last summer.

These fancy GPS receivers give centimeter accuracy vertical motions at 30 second intervals. Here is what the deployment of 3 such units in August of 2015 gives me:

Vertical (top) and horizontal (bottom) motion of Petermann Gletscher from GPS referenced to a GPS base station on bed rock at Kap Schoubye. Note the attenuation of the tide from 26 km sea ward of the grounding line (red) to at the grounding line (black) and 15 km landward of the grounding line (blue). The horizontal location motion has the mean motion removed to emphasize short-term change over the much, much larger forward motion of the glacier that varies from about ~700 (black) to ~1250 meters per year (red).

Vertical (top) and horizontal (bottom) motion of Petermann Gletscher from GPS referenced to a GPS base station on bed rock at Kap Schoubye. Note the attenuation of the tide from 26 km sea ward of the grounding line (red) to at the grounding line (black) and 15 km landward of the grounding line (blue). The horizontal location motion has the mean motion removed to emphasize short-term change over the much, much larger forward motion of the glacier that varies from about ~700 (black) to ~1250 meters per year (red).

We have indeed come a far way during the last 150 years or so. Mapping of remote landscape and icescape by starvation and dog-sled has been replaced by daily satellite imagery. Navigation by sextant and a mechanical clock has been replaced by GPS and atomic clock whose errors are further reduced by a local reference GPS. These fancy units and advanced data processing allow me to tell the vertical difference between the top of my iPhone sitting on a table in my garden from the table.

Working at in the garden at home preparing for field work.

Working at in the garden at home preparing for field work near Petermann Fjord.

P.S.: This is the first in a series of essays that I am currently developing into a peer-reviewed submission to the Oceanography Magazine of the Oceanography Society. The work is funded by NASA and NSF with grants to the University of Delaware.

Ahnert, F. 1963. The terminal disintegration of Steensby Gletscher, North Greenland. Journal of Glaciology 4 (35): 537-545.

Boas, F. 1885. Baffin-Land, geographische Ergebnisse einer in den Jahren 1883 und 1884 ausgeführten Forschungsreise. Petermann’s Mitteilungen Ergänzungsheft 80: 1-100.

Copland, L., D.R. Mueller, and L. Weir. 2007. Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters 34 (L21501): doi:10.1029/2007GL031809.

Freuchen, P. 1935. Arctic adventures: My life in the frozen North. Farrar & Rinehard, NY, 467 pp.

Higgins, A.K. 1990. North Greenland glacier velocities and calf ice production. Polarforschung 60 (1): 1-23.

Jeffries, M. 1992. Arctic ice shelves and ice islands: Origin, growth, and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. Reviews of Geophysics 30 (3):245-267.

Johnson, J.P. 1990. The establishment of Alert, N.W.T., Canada. Arctic 43 (1): 21-34.

Koch, L., 1928. Contributions to the glaciology of North Greenland. Meddelelser om Gronland 65: 181-464.

Koenig, L.S., K.R. Greenaway, M. Dunbar, and G. Hattersley-Smith. 1952. Arctic ice islands. Arctic 5: 67-103.

Münchow, A., K.K. Falkner, and H. Melling. 2015. Baffin Island and West Greenland current systems in northern Baffin Bay. Progress in Oceanography 132: 305-317.

Münchow, A., L. Padman, and H.A. Fricker. 2014. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology 60 (221): doi:10.3189/2014JoG13J135.

Nares, G. 1876. The official report of the recent Arctic expedition. John Murray, London,

Rassmussen, K., 1921: Greenland by the Polar Sea: the Story of the thule Expedition from Melville Bay to Cape Morris Jessup, translated from the Danish by Asta and Rowland Kenney, Frederick A. Stokes, New York, NY, 327 pp.

Sun Sets over Petermann Gletscher

Lights are out. Our ocean weather station on a floating glacier of northern Greenland confirms what the U.S. Naval Observatory reports for location 60 degrees and 30 minutes West longitude and 80 degrees and 40 minutes North latitude: As of today the sun is no longer above the horizon and will not rise until 23 February 2016. Total darkness means no solar power for the station that will have to survive on a fancy car battery temperatures as low as -50 degrees centigrade. Last week with the sun still up our station recorded -30.4 degrees celsius about 4 feet above the ice. How long will the station survive on that car battery?

Petermann Gletscher at dawn on 5 Oct. 2015 as captured by NASA Operation IceBridge. Our Ocean Weather Station is in the corner bottom left.

Petermann Gletscher at dawn on 5 Oct. 2015 as captured by NASA Operation IceBridge. Our Ocean Weather Station is in the corner bottom left.

Without power the station does not function, because each sensor, each computer, and each telephone call via the Iridium satellite system requires electricity. Without power I am in the dark about what the station does or what ocean or air temperatures are. Since I do have power at the moment, well, I got new data. For example, there is a voltage that the station sends me …

Voltage at Ocean Weather Station on Petermann Gletscher.

Voltage at Ocean Weather Station on Petermann Gletscher.

… whenever the sun is up, the solar panels recharge the battery and the voltage goes up. As I use electricity, the voltage goes down. Lets ignore a small temperature effect and details on how much electricity we draw at what “amperage.” Instead, lets focus on the regular up and down of voltage for the last 60 days and how it suddenly went flat. The flat line at 12.5 Volts tells me that the sun is down. The station now uses the car battery, but how long will this last? Quick answer is … a day, if I am dumb. Or 150 days, if I am smart. Time will tell, if I made a mistake in either my power budget or my computer code that gives and takes power to a range of sensors. Scary stuff, and my little sister Christina Parsons can attest, how nervous I was, when I uploaded new power-saving software that I wrote from my attic at home to the station in Greenland. The station did take the new software, restarted itself, and works making one data call each day instead of three. Data are still collected every hour, but I save 20% of total power.

Power is something in Watts (40 W Light bulb anyone?) and you have to multiply voltage by current draw (0.5 Amps anyone?) to estimate the power needs of the device drawing 0.5 Amp current at 12 Volts. Incidentally, 0.5 Amps is what the Iridium satellite phone draws when it calls me with new data. Let me check my power budget, if this is true … nope, it only takes 0.365 Amps, so it takes 12 volts times 0.365 Amps equal 4.4 Watts which is about 1/10 of that 40 W light bulb you are looking at, perhaps, or the station we put up: the yellow box is the car battery powering all the gadgets you see and many more you do not:

What I just showed you is the beginning of a power budget that I had to make to get my station through the night, now that there is no more sun for the next 4-5 months. My car batteries are rated to give 110 Watts for an hour, so if I run my 4.4 W satellite phone all the time, I would be out of battery juice after 110 Watt-Hours divided by 4.4 Watts equals 25 hours. That’s bad, real bad, especially since one should not run a car battery to zero and the battery at -30 degrees Celsius may only give me half the power than it would at the more usual 15 degrees Celsius we got outside. The solution to this problem is to use the phone only for a few minutes each day, say 5 minutes. So, since I am using the phone only 5 minutes out of the 1440 minutes that each day has, it takes about 1440 minutes divided by 5 minutes times 25 hours equals 300 days for the phone running 5 minutes each day to run down the battery. Magic this math is not, but it shows how important it is to use resources (electricity) wisely. There are times and places where it is not possible to plug your iPhone into a power outlet. You get the picture … well, here are some that University of Delaware PhD student Peter Washam took who was part of the ice drilling team during last summer’s deployment of the ocean weather station:

So, as of this morning at 4 am Delaware time, the station now in total darkness tells me that the ocean temperatures 700 meters below the 100 meter thick glacier are +0.3 degrees Celsius while air temperatures 2 meters above the ice are -11.1 degrees Celsius. Now what that means to the melting of the glacier by the ocean, I will have to tell you at another time in more detail. These data are the ONLY data from below any glacier to the north of the equator. We are really breaking new ground and are making new discoveries as we go along … as long as there is power. Hopefully there is no dumb mistake in my power budget.

Sun over the horizon of Greenland as seen during NASA's Operation IceBridge Flight in October 2015.

Sun over the horizon of Greenland as seen during NASA’s Operation IceBridge Flight in October 2015.

Ocean Weather Below a Greenland Floating Glacier

Sensing the oceans below ice as thick as the Empire State Building is tall, we are revealing some of the mysteries of ocean melting of one of Greenland’s largest glaciers. The expedition to Petermann Fjord last month made possible the deployment of three ocean sensing stations that all call home daily via Iridium satellite phone to send us new data from 800 meters below sea level. The ice of the glacier at our stations is 100 to 300 meters thick and a whimsical cable with 3 tiny wires connects the instruments under the glacier to a home-made computer that calls home daily with new data. I am still stunned at the many marvels of technology that all came together to make this happen.

University of Delaware PhD student Peter Washam at the Ocean-Weather station on Petermann Gletscher after final installation 2015-Aug.-20, 17:00 UTC at 80 39.9697 N and 60 29.7135 W.

University of Delaware PhD student Peter Washam at the Ocean-Weather station on Petermann Gletscher after final installation 2015-Aug.-20, 17:00 UTC at 80 39.9697 N and 60 29.7135 W.

Panoramic view of the ocean-weather station on Petermann Gletscher. View is towards the south-east with Washington Land in the background.  [Photo credit: Peter Washam].

Panoramic view of the ocean-weather station on Petermann Gletscher. View is towards the south-east with Washington Land in the background. [Photo credit: Peter Washam].

It started with an off-the-shelf automated weather station that David Huntley at the University of Delaware put together for me with the non-standard addition of 5 serial ports that each allow one ocean sensor to be connected by cable to the weather station. It continued with the holes that Paul Anker and Keith Nicholls of the British Antarctic Service drilled through Petermann Gletscher. My PhD student Peter Washam was on the ice helping with the drilling, preparing the ocean sensors, and he is now processing some of the new ocean data.

AWS2015

The map above shows Petermann Gletscher (bottom right), Petermann Fjord, and adjacent Nares Strait. The red lines are bottom depths at 500 and 1000 meters while the thick black line shows the location where the 550-m thick glacier sits on bed rock. All glacier ice seaward of this black line is floating with warm ocean waters below. These waters enter the fjord at he sill at the entrance to Petermann Fjord which is about 450 meters deep. The blue dots are locations where last months we collected detailed profiles of ocean temperature salinity, and oxygen. The warmest water inside the fjord and under the glacier enters near the bottom at this sill. The green dots on the glacier are the 3 drill sites where we put our ocean sensors down while red triangles are “fancy” GPS receivers that we placed for almost 2 weeks on the glacier. The one triangle on land (bottom right) is a permanent GPS station at Kap Schoubye that UNAVCO maintains under the code name SCBY. We will reference our moving glacier GPS station (the glacier moves) to this fixed station on bed rock, but that’s a story for another day.

The ocean data are worked up by a small, but wonder group of men and women of all ages working out of the universities of Gothenburg (Sweden), Oxford (England), and Delaware (USA) as well as BAS (England). It is very much an informal group of people who like each other and met in strange ways over the last year or so with all of us juggling way too many projects for which we all have way too many ideas. Bottom-up collaboration and sharing at its best from the bottom up.

Two quick highlights rushed onto these pages before I have to run off to teach a class on signal processing:

Measurements from the ocean weather station up until 2015-Sept.-11 as a function of time where Day-20 is Aug.-20 and Day-32 is Sept.-1. The station provides battery voltage (bottom panel), air and ocean temperatures, wind speed and direction, ice drift from GPS, and atmospheric pressure (top panel).

Measurements from the ocean weather station up until 2015-Sept.-11 as a function of time where Day-20 is Aug.-20 and Day-32 is Sept.-1. The station provides battery voltage (bottom panel), air and ocean temperatures, wind speed and direction, ice drift from GPS, and atmospheric pressure (top panel).

Ocean temperature (black) and salinity (red) observations from below the ice shelf of Petermann Gletscher at 5 different vertical levels from near the bottom (bottom panel) to the ice-ocean surface (surface panel).

Ocean temperature (black) and salinity (red) observations from below the ice shelf of Petermann Gletscher at 5 different vertical levels from near the bottom (bottom panel) to the ice-ocean surface (surface panel).The bottom of the ice shelf is about 90 meters below sea level.

Note that the scales for temperature and salinity are different at different vertical levels. The warmest water is always found near the bottom while both temperature and salinity under the ice shelf vary by a larger amount that we had initially expected. This means that there are direct and fast connections of the ocean under the glacier with waters inside the fjord and beyond. Notice also that air temperatures are well below freezing (0 degrees Celsius) for 2-3 weeks now while the ocean waters are well above freezing (-1.7 degrees Celsius) everywhere. Hence there is no melting at the surface while there is much melting at the bottom of the glacier. While trivial, this emphasizes the controlling influence that the oceans have on glaciers and ice shelves such as Petermann Gletscher. In the meantime, we got much exciting and fun work ahead of us.

Shout of thanks to NASA (and the US tax-payers) who funded this ocean-weather station at the University of Delaware at about $64,000 for a single year and NSF (and again the US taxpayers) who funded the larger ocean- and land-based experiments within which small part was embedded.

Münchow, A., Padman, L., and Fricker, H.A. (2014). Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland from 2000 to 2012, Journal of Glaciology, Vol. 60, No. 221, doi: 10.3189/2014JoG13J135

Johnson, H., Münchow, A., Falkner, K., & Melling, H. (2011). Ocean circulation and properties in Petermann Fjord, Greenland Journal of Geophysical Research, 116 (C1) DOI: 10.1029/2010JC006519

Rignot, E., & Steffen, K. (2008). Channelized bottom melting and stability of floating ice shelves Geophysical Research Letters, 35 (2) DOI: 10.1029/2007GL031765