Tag Archives: continental shelves

Northern Winds and Currents off North-East Greenland

I spent 6 weeks aboard the German research icebreaker R/V Polarstern last year leaving Tromso in Norway in early September and returned to Bremerhaven, Germany in October. We successfully recovered ocean sensors that we had deployed more than 3 years before. It felt good to see old friends, mates, and sensors back on the wooden deck. Many stories, some mysterious, some sad, some funny and happy could be told, but today I am working on some of the data as I reminisce.

The location is North-East Greenland where Fram Strait connects the Arctic Ocean to the north with the Atlantic Ocean in the south. We worked mostly on the shallow continental shelf areas where water depths vary between 50 and 500 meters. The map shows these areas in light bluish tones where the line shows the 100 and 300 meter water depth. Fram Strait is much deeper, more than 2000 meters in places. I am interested how the warm Atlantic water from Fram Strait moves towards the cold glaciers that dot the coastline of Greenland in the west.

Map of study area with 2014-16 mooring array in box near 78 N across Belgica Trough. Red triangles place weather data from Station Nord (81.2 N), Henrik Kr\o yer Holme (80.5 N), and Danmarkhaven (76.9 N). Black box indicates area of mooring locations.

There is also ice, lots of sea icebergs, and ice islands that we had to navigate. None of it did any harm to our gear that we moored for 1-3 years on the ocean floor that can and often is scoured by 100 to 400 meter thick ice from glaciers, however, 2-3 meter thick sea ice prevented us to reach three mooring locations this year and our sensors are still, we hope, on the ocean floor collecting data.

Ahhh, data, here we come. Lets start with the weather at this very lonely place called Henrik Krøyer Holme. The Danish Meteorological Institute (DMI) maintains an automated weather station that, it seems, Dr. Ruth Mottram visited and blogged about in 2014 just before we deployed our moorings from Polarstern back in 2014:

Weather station on Henrik Kroeyer Holme [Credit: Dr. Ruth Mottram, DMI]

It was a little tricky to find the hourly data and it took me more than a day to process and graph it to suit my own purposes, but here it is

Winds (A) and air temperature (B) from an automated weather station at Henrik Kroeyer Holme from 1 June, 2014 through 31 August, 2016. Missing values are indicated as red symbols in (A).

The air temperatures on this island are much warmer than on land to the west, but it still drops to -30 C during a long winter, but the end of July it reaches +5 C. The winds in summer (JJA for June, July, and August) are weak and variable, but they are often ferociously strong in winter (DJF for December, January, February) when they reach almost 30 meters per second (60 knots). The strong winter winds are always from the north moving cold Arctic air to the south. The length of each stick along the time line relates the strength of the winds, that is, long stick indicates much wind. The orientation of each stick indicates the direction that the wind blows, that is, a stick vertical down is a wind from north to south. I use the same type of stick plot for ocean currents. How do these look for the same period?

Ocean current vectors at four selected depths near the eastern wall of Belgica Trough. Note the bottom-intensified flow from south to north. A Lanczos low-pass filter removes variability at time scales smaller than 5 days to emphasize mean and low-frequency variability.

Ocean currents and winds have nothing in common. While the winds are from north to south, the ocean currents are usually in the opposite direction. This becomes particular clear as we compare surface currents at 39 meters below the sea surface with bottom currents 175 or even 255 meters below the surface. They are much stronger and steadier at depth than at the surface. How can this be?

Image of study area on 15 June 2014 with locations (blue symbols) where we deployed moorings a few days before this satellite image was taken by MODIS Terra. The 100-m isobath is shown in red.

Well, recall that there is ice and for much of the year this sea ice is not moving, but is stuck to land and islands. This immobile winter ice protects the ocean below from a direct influence of the local winds. Yet, what is driving such strong flows under the ice? We need to know, because it is these strong currents at 200 to 300 meter depth that move the heat of warm and salty Atlantic waters towards coastal glaciers where they add to the melting of Greenland. This is what I am thinking about now as I am trying to write-up for my German friends and colleagues what we did together the last 3 years.

Oh yes, and we did reach the massive terminus of 79 North Glacier (Nioghalvfjerdsfjorden) that features the largest remaining floating ice shelf in Greenland:

We recovered ocean moorings from this location also, but this is yet another story that is probably best told by scientists at the Alfred-Wegener-Institute who spent much time and treasures to put ship, people, and science on one ship. I am grateful for their support and companionship at sea and hopefully all of next year in Bremerhaven, Germany.

Sea Ice, Oceanography, and Nature’s Way to Paint

I am going to sea next week boarding the R/V Sikuliaq in Nome, Alaska to sail for 3 days north into the Arctic Ocean. When we arrive in our study area after all this traveling, then we have perhaps 18 days to deploy 20 ocean moorings. I worry that storms and ice will make our lives at sea miserable. So what does a good data scientist do to prepare him or herself? S/he dives into data:

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space.

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space. Slightly darker shades especially in the bottom segment are interpreted as sea ice. The offset in grey scale between top and bottom is caused by me using different numbers for two different data segments to bring the data into a range that varies between 0 and 1.

The image above is my first attempt to determine, if our planned mooring deployment locations are free of sea ice or not. The darker tones of gray are sea ice with the white spots probably thicker or piled-up ridges of rougher sea ice. The speckled gray surface to the north is probably caused by surface waves and other “noise” that are pretty random. There is a data point ever 40 meters in this image. It also helps to compare these very high-resolution ice data with products that the US National Ice Center (NIC) and the National Weather Service provide:

Ice Chart of the Alaska office of the National Weather Service (link)

Ice Chart of the Alaska office of the National Weather Service

The above is a wonderful map for general orientation, but it is not good or detailed enough to navigate a ship through the ice. The two maps agree, however, my patch of ice to the south of the moorings are represented as the orange/green patch on the top right (north-east). The orange means that 70-80% of the area is covered by ice and this ice is thicker than 1.2 meters and thus too thick for our ship to break through, but there are always pathways through ice and those can be found with the 40-m resolution maps.

In summary, on Sept.-29, 2016 all our moorings are in open water, but this can change, if the wind moves this math northward. So we are also watching the winds and here I like the analyses of Government Canada

Surface weather analysis from Government Canada for Oct.-2, 2016.

Surface weather analysis from Government Canada for Oct.-2, 2016. The map of surface pressure is centered on the north pole with Alaska at the bottom, Europe on the top, Greenland on the right, and Siberia on the left.

It shows a very low pressure center over Siberia to the south-west and a high pressure center over Arctic Canada to our north-east. This implies a strong wind to the north in our study area. So the ice edge will move north into our study area. If the High moves westward, we would be golden, but the general circulation at these latitudes are from west to east, that is, the Low over Siberia will win and move eastward strengthening the northward flow. That’s the bad news for us, but we still have almost 2 weeks before we should be in the area to start placing our fancy ocean moorings carefully into the water below the ice.

While this “operational” stuff motivated me to dive into the satellite radar data that can “see” through clouds and fog, I am most excited about the discovery that the radar data from the European Space Agency are easy to use with a little clever ingenuity and a powerful laptop (2.5 MHz Mac PowerBook). For example, this hidden gems appeared in the Chukchi Sea a few days earlier:

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

It is a piece of art, nature’s way to paint the surface of the earth only to destroy this painting the next minute or hour or day to make it all anew. It reminds me of the sand-paintings of some Native American tribes in the South-West of the USA that are washed away the moment they are finished. Here the art is in the painting, just as the pudding is in the eating, and the science is the thinking.

Sea ice and 2016 Arctic field work

The sea ice in the Arctic Ocean is quickly disappearing from coastal areas as we are entering the summer melt season. This year I follow this seasonal event with nervous anticipation, because in October and November we will be out at sea working north of northern Alaska. We plan to deploy a large number of ocean sensors to investigate how sound propagates from the deep Arctic Ocean on to the shallow Chukchi Sea. This figure shows our study area with the ice cover as it was reported yesterday from space:

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Zooming in a little further, I show the coast of Alaska along with 100 and 1000 meter contour of bottom depth over a color map of ice concentrations:

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

My responsibilities in this US Navy-funded project are the seven densely packed blue triangles. They indicate locations where I hope to measure continuously for a year ocean temperature, salinity, and pressure from which to construct sections of speed of sound and how it varies in time and space. I will also measure ice draft as well ice and ocean currents from which to estimate the roughness of the sea ice over time. Sea ice and ocean properties both impact sound propagation from deep to shallow water and vice versa.

A first question: What will the ice be like when we get there? This is the question that has the 40 or so people all working on this project anxiously preparing for the worst, but how can we expect what challenges are to come our way?

Doing my homework, I downloaded from the National Snow and Ice Data Center all gridded maps of ice concentrations that microwave satellites measured almost daily since 1978. Then I crunch the numbers on my laptop with a set of kitchen-sink Unix tools and code snippets such as

set ftp = 'ftp://sidads.colorado.edu'
set dir = 'pub/DATASETS/nsidc0081_nrt_nasateam_seaice/north'
...
wget -r -nd -l1 --no-check-certificate $ftp/$dir/$year/$file

along with fancy and free Fortran and General Mapping Tools to make the maps shown above. With these tools and data I can then calculate how much sea ice covers any area at any time. The result for custom-made mooring area at almost daily resolution gives a quick visual that I use to prepare for our fall 2016 expedition. The dotted lines in the top panel indicate the dates we are in the area.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

The story here is well-known to anyone interested in Arctic sea ice and climate change, but here it applies to a tiny spec of ocean between the 100 and 1000 meter isobath where we plan to deployed ocean sensors for a year in the fall of 2016. For the two decades of the last century, the ice cover looks like a crap shoot with 80% ice cover possible any month of the year and ice-free conditions unlikely but possible here or there for a week or two at most. The situation changed dramatically since about 2000. During the last six years our study area has always been free of ice from late August to early October, however, our 2016 expedition is during the transition from ice-free October to generally ice-covered early November, but, I feel, our saving grace is that the sea ice will be thin and mobile. I thus feel that we probably can work comfortable on account of ice for the entire period, but the winds and waves will blow us away …

Weather will be most uncomfortable, because fall is the Pacific storm season. And with little or only thin ice, there will be lots and lots of waves with the ship pitching and rolling and seeking shelter that will challenge us from getting all the work done even with 7 days for bad weather built into our schedule.

I worked in this area on larger ships in 1993, 2003, and in 2004. Here is a photo that Chris Linder of Woods Hole Oceanographic Institution took during a massive storm in the general vicinity in October of 2004. The storm halted all outside work on the 420 feet long USCGC Healy heading into the waves for 42 long and miserable hours:

Icebreaker taking on waves on the stern during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Icebreaker taking on waves on the bow during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Oh, I now also recall that during this four-week expedition we never saw land or the sun. It was always a drizzly gray ocean on a gray horizon. The Arctic Ocean in the fall is an often cruel and inhospitable place with driving freezing rain and fog.

Coastal Oceanography off North-East Greenland

Greenland is melting, but it is not entire clear why. Yes, air temperatures continue to increase, but what does it matter, if those temperatures are below freezing most of the time. What if the ocean does most of the melting a few 100 m below the surface rather than the air above? It means that gut feeling and everyday experience can be poor guides for science, it means that there is more than meets the eye, and it means that some of Greenland’s melting happens out of sight without the dramatic imagery of a rapidly disintegrating glacier that sends icebergs out to sea.

Floating section of 79N Glacier in north-east Greenland as seen from LandSat in march 2014.

Floating section of 79N Glacier in north-east Greenland as seen from LandSat in march 2014.

In order to “see” where changes may happen out of sight American tax payers supported me via the National Science Foundation (NSF) to use available University of Delaware ocean sensors from an available German ship to investigate the ocean near two large glaciers off north-east Greenland. The sensors are in the water for over a year now and will stay there for another to collect data every half hour. The data are stored on computers inside the sensors and it is a marvel of smart engineering that we can measure water temperature, salinity, and velocity at the bottom of an ice-covered ocean. Now what would I do with such data?

Two ocean sensor packages ready for deployment near Isle de France, Greenland 10 June 2014.

Two ocean sensor packages ready for deployment near Isle de France, Greenland 10 June 2014.

First, one needs to know that in the Arctic Ocean temperature increases as one moves a thermometer from the surface towards the bottom for the first 900 feet or 300 meters. This only make sense, if the warm water is heavier than the cold water above. This is the case in the Arctic, because the warm water at depth is also very salty. The cold waters above contain less salt and that’s why they float. The warmest waters originate from the Atlantic Ocean to the south-east of Iceland. Lets call it Atlantic Water for this reason. The surface waters contain sea ice and its fresh melt water and thus are always close to the freezing point, so lets call them Polar Waters.

Vertical profiles of temperature and salinity across Norske Ore Trough, Greenland. The insert shows station locations for profiles (small symbols) and moorings (large circles). The red dot marks the location of the red profile.

Vertical profiles of temperature and salinity across Norske Ore Trough, Greenland. The insert shows station locations for profiles (small symbols) and moorings (large circles). The red dot marks the location of the red profile.

All along the East Coast of Greenland, we find a strong southward flow of ice and Polar Water called the East Greenland Current. On a rare clear day one can “see” this flow as a beautifully structured undulating band separating the deep Greenland Sea from the shallow and broad continental shelves. Now recall that the warmest waters are in the Atlantic layer way down and somewhat offshore. How do these waters cross the East Greenland current and the very wide continental shelf to reach the glaciers along the coast? It is this question my project tries to answer with lots of help from NSF and German friends.

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

We think that the warm and salty waters flow near the bottom below the East Greenland Current at deep bottom depressions such as canyons. Testing this idea, we placed our sensors in a line across the canyon with a small ice-capped island called the Isle of France on one side and Belgica Bank on the other. We deployed seven instrument as an array across the canyon to measure the speed and direction of the flow as well as its temperatures and salinities. Our canyon connects the deep Greenland Sea 150 miles to the east with two glaciers another 100 miles to the north-west. We all anxiously hope that no iceberg wiped out bottom moorings and that they all record data faithfully until the summer of 2016 when we plan to recover instruments and data.

Section of temperature across Norske Ore Trough with Isle de France, Greenland on the left and Belgica Bank towards Fram Strait on the right. The view is towards 79N Glacier.

Section of temperature across Norske Ore Trough with Isle de France, Greenland on the left and Belgica Bank towards Fram Strait on the right. The view is towards 79N Glacier.

Before and after the placement of our moored instruments, however, we did survey the section from the ship and I show the temperature and salinity across our canyon. We now see that the water below 200 m depth are indeed very warm and salty as expected, but there is a detail that I cannot yet explain: notice the slight upward sloping contours of salinity near km-80 at the rim of the canyon and the downward sloping contours on the other side near km-10. Such sloping contours represent a flow out of the page at km-80 and into the page at km-10 which is exactly the opposite of what I expected. All I can say at the moment is that this snapshot does not resolve motions caused by the tides, the winds, and the seasonal cycles properly, but our moorings do. So, there are still mysteries to be solved by the data sitting on the bottom of the ocean guarded by towering spectacles of ice.

Tabular iceberg and sea ice cover near Isle de France 10 June 2014

Tabular iceberg and sea ice cover near Isle de France 10 June 2014

[This entry will be submitted to NSF as a Final Outcome Report for award 1362109 “Shelf-Basin Exchange near 79N Glacier and Zachariae Isstrom, North-East Greenland.” The work would not have been possible without the generous support of NSF as well as the German Government as represented by the Alfred Wegener Institute who sponsored the expedition to North-East Greenland in 2014. Torsten Kanzow, Benjamin Rabe, and Ursula Schauer of AWI all deserve as much and even more credit for this work than do I.]

Budéus, G., & Schneider, W. (1995). On the hydrography of the Northeast Water Polynya Journal of Geophysical Research, 100 (C3) DOI: 10.1029/94JC02024

Hughes, N., Wilkinson, J., & Wadhams, P. (2011). Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland Annals of Glaciology, 52 (57), 151-160 DOI: 10.3189/172756411795931633

Reeh, N., Thomsen, H., Higgins, A., & Weidick, A. (2001). Sea ice and the stability of north and northeast Greenland floating glaciers Annals of Glaciology, 33 (1), 474-480 DOI: 10.3189/172756401781818554

Wadhams, P., Wilkinson, J., & McPhail, S. (2006). A new view of the underside of Arctic sea ice Geophysical Research Letters, 33 (4) DOI: 10.1029/2005GL025131

Surface Currents, Satellite Imagery, and Software

Technology is advancing at break neck speeds, and with the release of the iPhone 6, US culture seems more obsessed than ever with it.  All one has to do is observe any populated locale to notice the direct impact of the “smart” phone on pedestrians walking down the street or, heaven forbid, people driving cars inches away from said pedestrians.  So, computers dominate our lives (including mine), but as a graduate student of Physical Ocean Science and Engineering I am encouraged to push technological limits. Here is one example that will endanger no pedestrians:

Im_1Veloc_fieldIm_2

Recently, I was directed to a new MATLAB software package that compares pixel movement between two images taken at different times.  I applied this software to satellite imagery of the NE Greenland coastal shelf to identify surface currents from moving ice.  Two of the images above were taken by MODIS on August 18th (Left) and August 19th (Right), 2014.  The images show the surface of the coastal ocean near NE Greenland; white dots are pieces of ice.   The highlighted region in the middle figure shows a velocity field derived from these two days indicating ice motion towards the South.  Listed below is a larger version of the middle figure.

Veloc_field

What does this mean?  Well, based on the work of Falck (2001), this water is on its way from the Arctic Ocean. The surface water is relatively fresh, and as we move from fall to winter this water will cool and new ice will form quickly. Notice that the waters to right in the images are largely clear of ice and that it is this southward current that keeps the ice in a banded structure. This is not something the new iPhone 6 will help me with, but some of the software in the iPhone camera could prove helpful, as I may just have learned in a seminar on bubbles of air bursting from breaking waves.

Falck, E. (2001), Contribution of waters of Atlantic and Pacific origin in the Northeast Water Polynya. Polar Research, 20: 193–200. doi: 10.1111/j.1751-8369.2001.tb00056.x