Tag Archives: continental shelves

Sea Ice, Oceanography, and Nature’s Way to Paint

I am going to sea next week boarding the R/V Sikuliaq in Nome, Alaska to sail for 3 days north into the Arctic Ocean. When we arrive in our study area after all this traveling, then we have perhaps 18 days to deploy 20 ocean moorings. I worry that storms and ice will make our lives at sea miserable. So what does a good data scientist do to prepare him or herself? S/he dives into data:

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space.

Map northern Chukchi Sea with mooring locations (red and blue symbols), contours of bottom topography, and radar backscatter from space. Slightly darker shades especially in the bottom segment are interpreted as sea ice. The offset in grey scale between top and bottom is caused by me using different numbers for two different data segments to bring the data into a range that varies between 0 and 1.

The image above is my first attempt to determine, if our planned mooring deployment locations are free of sea ice or not. The darker tones of gray are sea ice with the white spots probably thicker or piled-up ridges of rougher sea ice. The speckled gray surface to the north is probably caused by surface waves and other “noise” that are pretty random. There is a data point ever 40 meters in this image. It also helps to compare these very high-resolution ice data with products that the US National Ice Center (NIC) and the National Weather Service provide:

Ice Chart of the Alaska office of the National Weather Service (link)

Ice Chart of the Alaska office of the National Weather Service

The above is a wonderful map for general orientation, but it is not good or detailed enough to navigate a ship through the ice. The two maps agree, however, my patch of ice to the south of the moorings are represented as the orange/green patch on the top right (north-east). The orange means that 70-80% of the area is covered by ice and this ice is thicker than 1.2 meters and thus too thick for our ship to break through, but there are always pathways through ice and those can be found with the 40-m resolution maps.

In summary, on Sept.-29, 2016 all our moorings are in open water, but this can change, if the wind moves this math northward. So we are also watching the winds and here I like the analyses of Government Canada

Surface weather analysis from Government Canada for Oct.-2, 2016.

Surface weather analysis from Government Canada for Oct.-2, 2016. The map of surface pressure is centered on the north pole with Alaska at the bottom, Europe on the top, Greenland on the right, and Siberia on the left.

It shows a very low pressure center over Siberia to the south-west and a high pressure center over Arctic Canada to our north-east. This implies a strong wind to the north in our study area. So the ice edge will move north into our study area. If the High moves westward, we would be golden, but the general circulation at these latitudes are from west to east, that is, the Low over Siberia will win and move eastward strengthening the northward flow. That’s the bad news for us, but we still have almost 2 weeks before we should be in the area to start placing our fancy ocean moorings carefully into the water below the ice.

While this “operational” stuff motivated me to dive into the satellite radar data that can “see” through clouds and fog, I am most excited about the discovery that the radar data from the European Space Agency are easy to use with a little clever ingenuity and a powerful laptop (2.5 MHz Mac PowerBook). For example, this hidden gems appeared in the Chukchi Sea a few days earlier:

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

Close-up of the ice edge in the northern Chukchi Sea on Sept.-23, 2016. The mushroom cloud traced by sea ice and associated eddies are about 10-20 km across.

It is a piece of art, nature’s way to paint the surface of the earth only to destroy this painting the next minute or hour or day to make it all anew. It reminds me of the sand-paintings of some Native American tribes in the South-West of the USA that are washed away the moment they are finished. Here the art is in the painting, just as the pudding is in the eating, and the science is the thinking.

Sea ice and 2016 Arctic field work

The sea ice in the Arctic Ocean is quickly disappearing from coastal areas as we are entering the summer melt season. This year I follow this seasonal event with nervous anticipation, because in October and November we will be out at sea working north of northern Alaska. We plan to deploy a large number of ocean sensors to investigate how sound propagates from the deep Arctic Ocean on to the shallow Chukchi Sea. This figure shows our study area with the ice cover as it was reported yesterday from space:

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Ice concentration for June 14, 2016 from SSM/I imagery. Insert show study area to the north of Alaska and planned mooring locations (red box).

Zooming in a little further, I show the coast of Alaska along with 100 and 1000 meter contour of bottom depth over a color map of ice concentrations:

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

Ice concentrations from SSM/I to the north of norther Alaska with planned mooring locations across the sloping bottom. The 100 and 1000 meter contours are shown in gray with blue and red symbols representing locations of ocean and acoustic sensors, respectively.

My responsibilities in this US Navy-funded project are the seven densely packed blue triangles. They indicate locations where I hope to measure continuously for a year ocean temperature, salinity, and pressure from which to construct sections of speed of sound and how it varies in time and space. I will also measure ice draft as well ice and ocean currents from which to estimate the roughness of the sea ice over time. Sea ice and ocean properties both impact sound propagation from deep to shallow water and vice versa.

A first question: What will the ice be like when we get there? This is the question that has the 40 or so people all working on this project anxiously preparing for the worst, but how can we expect what challenges are to come our way?

Doing my homework, I downloaded from the National Snow and Ice Data Center all gridded maps of ice concentrations that microwave satellites measured almost daily since 1978. Then I crunch the numbers on my laptop with a set of kitchen-sink Unix tools and code snippets such as

set ftp = 'ftp://sidads.colorado.edu'
set dir = 'pub/DATASETS/nsidc0081_nrt_nasateam_seaice/north'
...
wget -r -nd -l1 --no-check-certificate $ftp/$dir/$year/$file

along with fancy and free Fortran and General Mapping Tools to make the maps shown above. With these tools and data I can then calculate how much sea ice covers any area at any time. The result for custom-made mooring area at almost daily resolution gives a quick visual that I use to prepare for our fall 2016 expedition. The dotted lines in the top panel indicate the dates we are in the area.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

Time series of daily ice concentration in the study area for different decades from January-1 through Dec.-31 for each year from 1980 through 2015. Panels are sorted by decade. The red curve is for 2015 and is shown for comparison in all panels.

The story here is well-known to anyone interested in Arctic sea ice and climate change, but here it applies to a tiny spec of ocean between the 100 and 1000 meter isobath where we plan to deployed ocean sensors for a year in the fall of 2016. For the two decades of the last century, the ice cover looks like a crap shoot with 80% ice cover possible any month of the year and ice-free conditions unlikely but possible here or there for a week or two at most. The situation changed dramatically since about 2000. During the last six years our study area has always been free of ice from late August to early October, however, our 2016 expedition is during the transition from ice-free October to generally ice-covered early November, but, I feel, our saving grace is that the sea ice will be thin and mobile. I thus feel that we probably can work comfortable on account of ice for the entire period, but the winds and waves will blow us away …

Weather will be most uncomfortable, because fall is the Pacific storm season. And with little or only thin ice, there will be lots and lots of waves with the ship pitching and rolling and seeking shelter that will challenge us from getting all the work done even with 7 days for bad weather built into our schedule.

I worked in this area on larger ships in 1993, 2003, and in 2004. Here is a photo that Chris Linder of Woods Hole Oceanographic Institution took during a massive storm in the general vicinity in October of 2004. The storm halted all outside work on the 420 feet long USCGC Healy heading into the waves for 42 long and miserable hours:

Icebreaker taking on waves on the stern during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Icebreaker taking on waves on the bow during a fall storm in the Beaufort Sea in October 2004. [Photo Credit: Chris Linder, Woods Hole Oceanographic Institution]

Oh, I now also recall that during this four-week expedition we never saw land or the sun. It was always a drizzly gray ocean on a gray horizon. The Arctic Ocean in the fall is an often cruel and inhospitable place with driving freezing rain and fog.

Coastal Oceanography off North-East Greenland

Greenland is melting, but it is not entire clear why. Yes, air temperatures continue to increase, but what does it matter, if those temperatures are below freezing most of the time. What if the ocean does most of the melting a few 100 m below the surface rather than the air above? It means that gut feeling and everyday experience can be poor guides for science, it means that there is more than meets the eye, and it means that some of Greenland’s melting happens out of sight without the dramatic imagery of a rapidly disintegrating glacier that sends icebergs out to sea.

Floating section of 79N Glacier in north-east Greenland as seen from LandSat in march 2014.

Floating section of 79N Glacier in north-east Greenland as seen from LandSat in march 2014.

In order to “see” where changes may happen out of sight American tax payers supported me via the National Science Foundation (NSF) to use available University of Delaware ocean sensors from an available German ship to investigate the ocean near two large glaciers off north-east Greenland. The sensors are in the water for over a year now and will stay there for another to collect data every half hour. The data are stored on computers inside the sensors and it is a marvel of smart engineering that we can measure water temperature, salinity, and velocity at the bottom of an ice-covered ocean. Now what would I do with such data?

Two ocean sensor packages ready for deployment near Isle de France, Greenland 10 June 2014.

Two ocean sensor packages ready for deployment near Isle de France, Greenland 10 June 2014.

First, one needs to know that in the Arctic Ocean temperature increases as one moves a thermometer from the surface towards the bottom for the first 900 feet or 300 meters. This only make sense, if the warm water is heavier than the cold water above. This is the case in the Arctic, because the warm water at depth is also very salty. The cold waters above contain less salt and that’s why they float. The warmest waters originate from the Atlantic Ocean to the south-east of Iceland. Lets call it Atlantic Water for this reason. The surface waters contain sea ice and its fresh melt water and thus are always close to the freezing point, so lets call them Polar Waters.

Vertical profiles of temperature and salinity across Norske Ore Trough, Greenland. The insert shows station locations for profiles (small symbols) and moorings (large circles). The red dot marks the location of the red profile.

Vertical profiles of temperature and salinity across Norske Ore Trough, Greenland. The insert shows station locations for profiles (small symbols) and moorings (large circles). The red dot marks the location of the red profile.

All along the East Coast of Greenland, we find a strong southward flow of ice and Polar Water called the East Greenland Current. On a rare clear day one can “see” this flow as a beautifully structured undulating band separating the deep Greenland Sea from the shallow and broad continental shelves. Now recall that the warmest waters are in the Atlantic layer way down and somewhat offshore. How do these waters cross the East Greenland current and the very wide continental shelf to reach the glaciers along the coast? It is this question my project tries to answer with lots of help from NSF and German friends.

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

We think that the warm and salty waters flow near the bottom below the East Greenland Current at deep bottom depressions such as canyons. Testing this idea, we placed our sensors in a line across the canyon with a small ice-capped island called the Isle of France on one side and Belgica Bank on the other. We deployed seven instrument as an array across the canyon to measure the speed and direction of the flow as well as its temperatures and salinities. Our canyon connects the deep Greenland Sea 150 miles to the east with two glaciers another 100 miles to the north-west. We all anxiously hope that no iceberg wiped out bottom moorings and that they all record data faithfully until the summer of 2016 when we plan to recover instruments and data.

Section of temperature across Norske Ore Trough with Isle de France, Greenland on the left and Belgica Bank towards Fram Strait on the right. The view is towards 79N Glacier.

Section of temperature across Norske Ore Trough with Isle de France, Greenland on the left and Belgica Bank towards Fram Strait on the right. The view is towards 79N Glacier.

Before and after the placement of our moored instruments, however, we did survey the section from the ship and I show the temperature and salinity across our canyon. We now see that the water below 200 m depth are indeed very warm and salty as expected, but there is a detail that I cannot yet explain: notice the slight upward sloping contours of salinity near km-80 at the rim of the canyon and the downward sloping contours on the other side near km-10. Such sloping contours represent a flow out of the page at km-80 and into the page at km-10 which is exactly the opposite of what I expected. All I can say at the moment is that this snapshot does not resolve motions caused by the tides, the winds, and the seasonal cycles properly, but our moorings do. So, there are still mysteries to be solved by the data sitting on the bottom of the ocean guarded by towering spectacles of ice.

Tabular iceberg and sea ice cover near Isle de France 10 June 2014

Tabular iceberg and sea ice cover near Isle de France 10 June 2014

[This entry will be submitted to NSF as a Final Outcome Report for award 1362109 “Shelf-Basin Exchange near 79N Glacier and Zachariae Isstrom, North-East Greenland.” The work would not have been possible without the generous support of NSF as well as the German Government as represented by the Alfred Wegener Institute who sponsored the expedition to North-East Greenland in 2014. Torsten Kanzow, Benjamin Rabe, and Ursula Schauer of AWI all deserve as much and even more credit for this work than do I.]

Budéus, G., & Schneider, W. (1995). On the hydrography of the Northeast Water Polynya Journal of Geophysical Research, 100 (C3) DOI: 10.1029/94JC02024

Hughes, N., Wilkinson, J., & Wadhams, P. (2011). Multi-satellite sensor analysis of fast-ice development in the Norske Øer Ice Barrier, northeast Greenland Annals of Glaciology, 52 (57), 151-160 DOI: 10.3189/172756411795931633

Reeh, N., Thomsen, H., Higgins, A., & Weidick, A. (2001). Sea ice and the stability of north and northeast Greenland floating glaciers Annals of Glaciology, 33 (1), 474-480 DOI: 10.3189/172756401781818554

Wadhams, P., Wilkinson, J., & McPhail, S. (2006). A new view of the underside of Arctic sea ice Geophysical Research Letters, 33 (4) DOI: 10.1029/2005GL025131

Surface Currents, Satellite Imagery, and Software

Technology is advancing at break neck speeds, and with the release of the iPhone 6, US culture seems more obsessed than ever with it.  All one has to do is observe any populated locale to notice the direct impact of the “smart” phone on pedestrians walking down the street or, heaven forbid, people driving cars inches away from said pedestrians.  So, computers dominate our lives (including mine), but as a graduate student of Physical Ocean Science and Engineering I am encouraged to push technological limits. Here is one example that will endanger no pedestrians:

Im_1Veloc_fieldIm_2

Recently, I was directed to a new MATLAB software package that compares pixel movement between two images taken at different times.  I applied this software to satellite imagery of the NE Greenland coastal shelf to identify surface currents from moving ice.  Two of the images above were taken by MODIS on August 18th (Left) and August 19th (Right), 2014.  The images show the surface of the coastal ocean near NE Greenland; white dots are pieces of ice.   The highlighted region in the middle figure shows a velocity field derived from these two days indicating ice motion towards the South.  Listed below is a larger version of the middle figure.

Veloc_field

What does this mean?  Well, based on the work of Falck (2001), this water is on its way from the Arctic Ocean. The surface water is relatively fresh, and as we move from fall to winter this water will cool and new ice will form quickly. Notice that the waters to right in the images are largely clear of ice and that it is this southward current that keeps the ice in a banded structure. This is not something the new iPhone 6 will help me with, but some of the software in the iPhone camera could prove helpful, as I may just have learned in a seminar on bubbles of air bursting from breaking waves.

Falck, E. (2001), Contribution of waters of Atlantic and Pacific origin in the Northeast Water Polynya. Polar Research, 20: 193–200. doi: 10.1111/j.1751-8369.2001.tb00056.x

East Greenland Current Instabilities

The coast off north-east Greenland is a grey, cloudy, and icy place. I spent 4 weeks on a ship earlier this summer to place sensors on the ocean floor to measure water currents, salinity, and temperature. The data shall uncover the mystery of how ocean heat 300 m below the surface gets to glaciers to melt them from below year round. My contribution is a small part of a larger effort by German, Norwegian, Danish, American, and British scientists to reveal how oceans change glaciers and how oceans impact Greenland’s ice sheet, climate, and weather.

So, for months now I am watching rather closely how this ocean looks from space. Usually it is cloudy with little exciting to see, but for 4 days this week the clouds broke and displayed a violently turbulent ocean worthy of a Van Gogh painting:

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

Satellite image of ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

A wavy band of white near the red lines indicates the East Greenland Current. The red lines show where the water is 500, 750, and 1000 m deep. All waters to the left (west) of the red lines are shallow continental shelf while all waters to the right (east) are deep basin. Some islands and headlands of Greenland appear on the left of the image as solid grey. The image covers a distance about the same as from Boston to Washington, DC or London to Aberdeen, Scotland. Black areas are ocean that is clear of ice while the many shades of white and gray are millions of ice floes that act as particles moved about by the surface flow. Using a different satellite with much higher resolution shows these particles. The detail is from a tiny area to the north-west of the red circle near 77.5 North latitude:

Individual ice particles as seen on the north-east Greenland shelf from LandSat 15-m resolution from Aug.-21, 2014 near 77.5N and 10 W.

Individual ice particles as seen on the north-east Greenland shelf from LandSat 15-m resolution from Aug.-21, 2014 near 77.5N and 10 W.

Strongly white areas indicate convergent ocean surface currents that concentrate the loose ice while divergent ocean currents spread the ice particles out in filaments and swirls and eddies.

This is how many real fluids look like if one takes a snapshot as satellites do. Stringing such snapshots together, I show the fluid motion as comes to life for about 3 days:

Output

Notice how the large crests seaward of the red line between 74 and 75 North latitude grow and appear to break backward. This is an instability of the underlying East Greenland Current. It starts out as a small horizontal “wave,” but unlike the waves we watch at the beach, the amplitude of this “wave” is horizontal (east-west) and not vertical (up-down). The mathematics are identical, however, and this is the reason that I call this a wave. As the wave grows, it become steeper, and as it becomes too steep, it breaks and as it breaks, it forms eddies. These eddies then persist in the ocean for many weeks or months as rotating, swirling features that carry the Arctic waters of the East Greenland Current far afield towards the east. The East Greenland Current, however, continues southward towards the southern tip of Greenland. The wave and eddy processes observed here, however, weaken the current as some of its energy is carried away with the eddies.

I could not find any imagery like this in the scientific literature for this region, but similar features have been observed in similar ocean current systems that transport icy cold waters along a shelf break. The Labrador Current off eastern Canada shows similar instabilities as does the East Kamchatka Current off Russia in its Pacific Far East. And that’s the beauty of physics … they organize nature for us in ways that are both simple and elegant, yet all this beauty and elegance gives us complex patterns that are impossible to predict in detail.

Beszczynska-Möller, A., Woodgate, R., Lee, C., Melling, H., & Karcher, M. (2011). A Synthesis of Exchanges Through the Main Oceanic Gateways to the Arctic Ocean Oceanography, 24 (3), 82-99 DOI: 10.5670/oceanog.2011.59

LeBlond, P. (1982). Satellite observations of labrador current undulations Atmosphere-Ocean, 20 (2), 129-142 DOI: 10.1080/07055900.1982.9649135

Solomon, H., & Ahlnäs, K. (1978). Eddies in the Kamchatka Current Deep Sea Research, 25 (4), 403-410 DOI: 10.1016/0146-6291(78)90566-0