Tag Archives: underwater acoustics

How to whisper under sea ice: Wireless Acoustic Sensor Network Design

I want to build a cell phone system under water. I want it to send me a text messages every 30 minutes from 200 feet below the ocean that is covered by sea ice next to a glacier in northern Greenland where polar bears roam to catch seals for food at -40 Fahrenheit. Why would I want to do this and is this is even possible?

The author measuring sea ice thickness in Wolstenholme Fjord, Greenland April-17, 2017.

The author measuring sea ice thickness in Wolstenholme Fjord, Greenland April-17, 2017.

Our project successfully showed that it is possible to move data as text messages from a computer in the ocean to another and on to another and then via a cable to a weather station and then on to a satellite and then on to my laptop at home somewhere, anywhere, really [Intellectual Merit]. The ocean data that we moved by whispering from modem to modem (my acoustic cell phone towers) under water can be anything that any scientist may want to study. It could, for example, detect pollutants in the water that seep out of the sediment like gas or oil or radioactive materials burried accidentally [Broader Impacts] such as a nuclear-tipped B-52 bomber that crashed into Wolstenholme Fjord on January-21, 1968 at the height of the Cold War. The propagation of sound under ice also has military applications, because our communication network operates in both ways, that is, if I can receive a text message, I can also send one [Broader Impacts].

Installation of Automated Weather Station on Mar.-23, 2017 near Thule, Greenland via snowmobile. The station includes a satellite connection to the internet and a cable to the ocean.

Installation of Automated Weather Station on Mar.-23, 2017 near Thule, Greenland via snowmobile. The station includes a satellite connection to the internet and a cable to the ocean.

While the problem sounds simple enough, it is hard, real hard, because it requires many different people with very different skill sets. Our project included mechanical, electrical, and computer engineers but also scientists who know about acoustics, oceanography, and sea ice, as well as technicians with common sense and practical abilities to keep machines and people moving and running safely. This includes guns that we had to carry while working on the sea ice via snowmobile to protect from polar bears and medically trained personnel who could spot frostbites before they bite. All of this has to come together in just the right way and right time. Good and successful science is more than just engineering and machines, there is a strong human element in all polar field work such as ours. 

A local volunteer is designing, building, and rigging the Research Sled R/S Peter Freuchen for profiling the ocean below the sea ice in March 2017 on Thule Air Base.

A local volunteer is designing, building, and rigging the Research Sled R/S Peter Freuchen for profiling the ocean below the sea ice in March 2017 on Thule Air Base.

The first step in our project involved the design of the acoustic modems that Lee Freitag of Woods Hole Oceanographic Institution did many years back. It took us about 2 years to select this design that Lee then modified for this application in 2014-15). The second step involved the selection of a study site where our small group of 6 people could work and experiment and learn by some trial and error without incurring extra-ordinary costs (2015-16). It helped that I was in and out of Thule Air Base on unrelated projects in 2015 and 2016 when we settled for the final experiment to take place in March and April of 2017. Satellite remote sensing tools where then developed to quantify sea ice conditions for safe operation and navigation traveling on the  ice. We uncovered a barely visible area of thin ice to the south of Manson Island that recurs at the same location every year. We stayed clear of this area.

Thule2017_CTD

Satellite image of ice-covered Wolstenholme Fjord, Greenland with water column profiling station (green dots) and acoustic modems (red dots). Blue lines are water depths in meters. Labels G1, G2, and G3 indicate three tide-water glaciers while Thule refers to Thule Air Base. Saunders Island is near the center left while the weather station is the red dot halfway between Saunders and Manson Islands.

Field work started with a survey of sea ice thickness on Mar. 18/19, 2017 by drilling 2” holes through the sea ice that varied in measured thickness from 0.12 m (4 inches) near Manson Island to 1.25 m (4 feet) near Thule Air Base. On Mar.-23, 2017 we deployed the weather station along with a tent and survival gear at the center of our study area. An ocean temperature mooring was deployed to complement in time a spatial survey of ocean sound speed profiles estimated from conductivity, temperature, depth (CTD) measurements. We drilled 10” holes through the sea ice for our profiling CTD operated via an electrical winch. Our CTD survey spanned the entire fjord from three tidewater glaciers in the east to the edge of the sea ice in the west. Concurrently ocean testing of acoustic communication between modems commenced Apr.-8, 2017 and the final array was deployed Apr.-14/15 to be fully operational Apr.-16/18. All gear was recovered and stored at Thule Air Base Apr.-18/19, 2017 before our departure Apr.-20, 2017.

Research Sled

Research Sled “Peter Freuchen” with wooden CTD storage box, electrical winch, tripod, and electrical motor during deployment on Apr.-7, 2017. View is to the west with Cape Atholl on the left and Wolstenholme Island on the right background. University of Delaware technician operates the winch via joy stick while a student monitors the instrument’s descent through water column visually at the 10” hole and acoustically via a commercial Fish-Finding sonar.

Subsequent analysis in 2017/18 revealed a successful experiment as data from ocean sensors traveled along multiple paths to the weather station and on to the internet. All data were submitted to the NSF Arctic Data Center where after review they will become public at

https://arcticdata.io/catalog/view/urn:uuid:d2775281-3231-47d0-ab79-b2e506ea8d04

This graph is just one of many in desperate need of a proper peer-reviewed publication. There is always more work to do …

Time series of ocean temperature at the weather station from 10-m (top) to 100-m (bottom below the sea ice. The red line gives the -1.7 Celsius for reference. The temperature field dominates the speed of sound field. Note the presence and absence of tidal oscillations.

Time series of ocean temperature at the weather station from 10-m (top) to 100-m (bottom below the sea ice. The red line gives the -1.7 Celsius for reference. The temperature field dominates the speed of sound field. Note the presence and absence of tidal oscillations.

How to Power Modern Economies: Read Your Meter

Read you meter at home. This fun-filled advice was given by Sir David MacKay in a wonderful TEDx talk about how we heat our homes, get to work, run our computers, and how it all scales across countries and continents. The idea is really about how we run our lives while also trying to pass on a livable planet to our grand-children without the politically correct “greenwash” and self-righteous “claptraps”. Read your meter, do some algebra, and embrace the adventure to explore your home, your life, and the energy it all takes. If you read this far, watch the movie

David MacKay taught physics and information theory at the University of Cambridge in England. I learnt of him via Ruth Mottram in one of her many tweets. Dr. Mottram studies climate impacts of Greenland glaciers and works at the Danish Meteorological Institute. The tweet made me buy the book “Information Theory, Inference, and Learning Algorithm’s” that David MacKay wrote a few years back. It arrived today.

What piqued my interest was the advanced math that goes into designing networks that send and transform information such telephone calls via wireless, computer networks, and how to deal with imperfect channels of communication. My marriage comes to mind, too, because what I say is not always what I mean which is not always what my wife hears and vice versa, but I digress. Imperfect communication channels are one challenge we will face in an experiment to explore acoustic underwater data transmissions that hopefully will take place next year out of Thule Air Force Base, Greenland. Water and ice are imperfect communication channels that we need to use wisely to make our whispers carry far. Try to talk to a person across a busy street in Manhattan with all its hustle and bustle; you need to find something smarter and more effective than just simple shouting.

David MacKay wrote a second book that is close to his TEDx talk and is called “Sustainable Energy without the Hot Air.” Experimenting at home like any good physicist does, he discovers that “… the more often I read my meter, the less gas I use!”

There is so much more to this man, his work, and ideas as a physicist with a keen interest in the big picture without skipping the details. Sadly, he died yesterday of cancer too early only 48 years of age.

Greenland Glacier Ocean Warming

The Swedish icebreaker Oden will visit Petermann Fjord in northern Greenland in 6 months time. The US National Science Foundation (NSF) funded a large geophysical and geological experiment after excruciating peer-review over a 4-year period. The experiment shall reveal climate histories from sediment cores, geomagnetics, and both bottom and sub-bottom sonar profiling. Besides this main mission Oden also supports several smaller auxiliary projects some of which are funded by NSF while others are not. It will be a fine collaboration between Swedish and American scientists working together in perhaps one of the most difficult to reach and beautiful places on earth.

Seaward front of Petermann Glacier Aug.-11, 2012. View is from a small side-glacier towards the south-east across Petermann Fjord with Petermann Gletscher to the left (east). [Photo Credit: Erin Clarke, Canadian Coast Guard Ship Henry Larsen]

Seaward front of Petermann Glacier Aug.-11, 2012. View is from a small side-glacier towards the south-east across Petermann Fjord with Petermann Gletscher to the left (east). [Photo Credit: Erin Clarke, Canadian Coast Guard Ship Henry Larsen]

I will aboard the ship to deploy sensors some of which exist and are funded while others are neither. Let me outline first the funded part and then part where you the reader and I can perhaps join forces. First, we will test first elements of an underwater acoustic communication system. Think cell-phones, except the phone towers are under water where they are called modes. The modems talk to each other by sending sound back and forth the same way that whales do talk to each other.

Here is a narwhals sound

that you can use as a ringtone, credit goes to Voices of the Sea web-site at Scripps Institution of Oceanography. These whales visit Petermann Fjord in summer and we saw many of them frolicking in August of 2012 when I visited the area with the Canadian Coast Guard whom I credit for these photos:

Our man-made sound is very quiet, but because it is quiet, it only moves 3-10 km through the water. To increase our range, we plan to install several quiet sound sources that whisper from one water-phone (=hydrophone) to the next. The goal is to get data from ocean sensors moved along this whispering system of underwater “cell phones” to reach a listening station that we plan to install at the edge of Petermann Gletscher’s floating ice shelf. The ice is 200 meters or 600 feet thick and it is not trivial to drill through that much ice, but it can be done, and the British Antarctic Survey is aboard with a team of experts to do so to get sediment cores from the bottom below the ice:

Makinson1993-Fig04

Today I ordered a first cable that will connect the underwater modem hanging under the 200-m thick ice to the surface where a fancy computer connects it to the internet via to a satellite phone. All data calls that the underwater listening station receives will move up the cable to the glacier surface and on to us all via the internet. This challenging engineering project is funded, but I like to use the same hole, computer, and satellite link to get additional ocean and air data.

Additional stations will be drilled through the ice-shelf farther inland to reach the ocean also. Here we also need cables and instruments that tells us how the glacier is melted by the ocean at different location along its 50 km long floating ice shelf. The incremental costs are small relative to the cost of getting a ship and helicopters there, but NSF cannot easily fund small projects rapidly. It takes a long time to pass scientific peer review. This is where you, my dear reader come in: I need your help to raise $10,000 to add science and observations to an engineering feasibility study that is the underwater whispering sound system.

The motivation and details are described with videos, pictures, laboratory notes, plots, ideas, as well as some short, quirky, yet technically correct descriptions at the crowd-funding site

https://experiment.com/projects/ocean-warming-under-a-greenland-glacier.

I created and launched it today, it will be up for 30 more days. If you can and if you like the science, work, and fun that I describe on these pages, please consider making a small donation. You have the power to make this happen and I will share all data both from below and above the ocean and glacier surface with you.

As a physicist, gardener, teacher, writer, traveler, ping-pong player, and geocacher I am naturally curious about both our natural and social world. I love experiments and to me the crowd-funding at Experiment.com is a most enjoying experiment to connect to people in a new way. Full disclosure, however, this company takes 8% of all funds generated to supports its wonderful software and staff. Perhaps you like to join this experiment by spreading the word and, if you can afford it, help pay for some of the technology needed to bring Greenland and its mysteries to everyone who wants to connect to it.

Measuring Ice Thickness From The Ocean

Ice floats and moves abouts. It melts in summer, it freezes in winter, but it moves from here to Continue reading