Tag Archives: continental shelves

Ocean Circulation and Melting Glaciers off North-East Greenland

Scientists like myself always have ideas and theories on how oceans and climate work, but these need testing with real (not virtual) data before they can be accepted as truth or dismissed as fool’s errand. This is how science works. And today the National Science Foundation recommended Continue reading

Travels by Mind to the Glaciers and Oceans off North-East Greenland

Our minds travel easier than the body. My eyes have never seen East Greenland, but I moved across its white Continue reading

The Turbulence of Van Gogh and the Labrador Shelf Current

Vincent Van Gogh painted his most turbulent images when insane. The Labrador Current resembles Van Gogh’s paintings when it becomes unstable. There is no reason that mental and geophysical instability relate to each other. And yet they do. Russian physicist Andrey Kolmogorov developed theories of turbulence 70 years ago that Mexican physicist applied to some of Van Gogh’s paintings such as “Starry Sky:”

Vincent Van Gogh's "Starry Sky" painted in June 1889.

Vincent Van Gogh’s “Starry Sky” painted in June 1889.

The whirls and curls evoke motion. The colors vibrate and oscillate like waves that come and go. There are rounded curves and borders in the tiny trees, the big mountains, and the blinking stars. Oceanographers call these rounded curves eddies when they close on themselves much as is done by a smooth wave that is breaking when it hits the beach in violent turmoil.

Waves come in many sizes at many periods. The wave on the beach has a period of 5 seconds maybe and measures 50 meters from crest to crest. Tides are waves, too, but their period is half a day with a distance of more than 1000 km from crest to crest. These are scales of time and space. There exist powerful mathematical statements to tell us that we can describe all motions as the sum of many waves at different scales. Our cell phone and computer communications depend on it, as do whales, dolphins, and submarines navigating under water, but I digress.

The Labrador Shelf Current off Canada moves ice, icebergs, and ice islands from the Arctic down the coast into the Atlantic Ocean. To the naked eye the ice is white while the ocean is blue. Our eyes in the sky on NASA satellites sense the amount of light and color that ice and ocean when hit by sun or moon light reflects back to space. An image from last friday gives a sense of the violence and motion when this icy south-eastward flowing current off Labrador is opposed by a short wind-burst in the opposite direction:

Ice in the Labrador Current as seen by MODIS-Terra on May 3, 2013.

Ice in the Labrador Current as seen by MODIS-Terra on May 3, 2013. Blue colors represent open water while white and yellow colors represent ice of varying concentrations.

Flying from London to Chicago on April 6, 2008, Daniel Schwen photographed the icy surface of the Labrador Current a little farther south:

Ice fields seen in Labrador Current April 6, 2008 from a plane. [Photo Credit: Daniel Schwen]

Ice fields seen in Labrador Current April 6, 2008 from a plane. [Photo Credit: Daniel Schwen]

Ice in the Labrador Current as seen by MODIS-Terra on April 6, 2008. Blue colors represent open water while white and yellow colors represent ice of varying concentrations.

Ice in the Labrador Current as seen by MODIS-Terra on April 6, 2008. Blue colors represent open water while white and yellow colors represent ice of varying concentrations.

The swirls and eddies trap small pieces of ice and arrange them into wavy bands, filaments, and trap them. The ice visualizes turbulent motions at the ocean surface. Also notice the wide range in scales as some circular vortices are quiet small and some rather large. If the fluid is turbulent in the mathematical sense, then the color contrast or the intensity of the colors and their change in space varies according to an equation valid for almost all motions at almost all scales. It is this scaling law of turbulent motions that three Mexican physicists tested with regard to Van Gogh’s paintings. They “pretended” that the painting represents the image of a flow that follows the physics of turbulent motions. And their work finds that Van Gogh indeed painted intuitively in ways that mimics nature’s turbulent motions when the physical laws were not yet known.

There are two take-home messages for me: First, fine art and physics often converge in unexpected ways. Second, I now want to know, if nature’s painting of the Labrador Shelf Current follows the same rules. There is a crucial wrinkle in motions impacted by the earth rotations: While the turbulence of Van Gogh or Kolmogorov cascades energy from large to smaller scales, that is, the larger eddies break up into several smaller eddies, for planetary-scale motions influenced by the Coriolis force due to earth’s rotation, the energy moves in the opposite direction, that is, the large eddies get larger as the feed on the smaller eddies. There is always more to discover, alas, but that’s the fun of physics, art, and oceanography.

Aragón, J., Naumis, G., Bai, M., Torres, M., & Maini, P. (2008). Turbulent Luminance in Impassioned van Gogh Paintings Journal of Mathematical Imaging and Vision, 30 (3), 275-283 DOI: 10.1007/s10851-007-0055-0

Ball, P. (2006). Van Gogh painted perfect turbulence news@nature DOI: 10.1038/news060703-17

Wu, Y., Tang, C., & Hannah, C. (2012). The circulation of eastern Canadian seas Progress in Oceanography, 106, 28-48 DOI: 10.1016/j.pocean.2012.06.005

Petermann Glacier Ice Islands: Where are they now?

Two large calving events in 2010 and 2012 reduced the floating part of Petermann Gletscher by 44 km (28 miles) in length, 6 Manhattans (380 km^2) in area, and 42 gigatons in mass. But what’s a gigaton? Writing in The Atlantic Magazine, Julio Friedman states that if we put all people living on earth onto a scale, then we will get half a gigaton. So, Petermann’s two ice island weigh more than eighty times as all humanity combined. As a reminder, this is what the break-ups looked like:

Petermann Gletscher in 2003, 2010, and 2012 from MODIS Terra in rotated co-ordinate system with repeat NASA aircraft overflight tracks flown in 2002, 2003, 2007, and 2010. Thick black line across the glacier near y = -20 km is the grounding line location from Rignot and Steffen (2008).

Petermann Gletscher in 2003, 2010, and 2012 from MODIS Terra in rotated co-ordinate system with repeat NASA aircraft overflight tracks flown in 2002, 2003, 2007, and 2010. Thick black line across the glacier near y = -20 km is the grounding line location from Rignot and Steffen (2008).

It turns out that the smaller 2012 ice island is just as heavy as the 2010 island, because it is much thicker, about 200 m, 600 feet, or half the height of the Empire State Building in Manhattan. These thick and thin islands have since left Petermann Fjord and Nares Strait for more southern climes. The thinnest piece reached Newfoundland in the summer of 2011 where it melted away. Most of the thicker, larger, and heavier ice islands from Petermann and Ryder Glaciers now litter almost the entire eastern seaboard of Canada as the two largest pieces have split, broken, and splintered into many smaller pieces. Each of these still represents an exceptionally large and dangereous piece of ice that can wipe any offshore oil platform off its foundation. Luc Desjardins of the Canadian Ice Service now tracks more than 40 segments, some still bigger than Manhattan, some as small as a football field. The distribution along the 1500 km (1000 miles) of coast is staggering:

RadarSat imagery of eastern Baffin Island (bottom, right), western Greenland (top, right), and Nares Strait with Petermann Fjord (top, left) with pieces of Petermann and Ryder Ice Islands identified. [Credit: Luc Lesjardins, Canadian Ice Service]

RadarSat imagery of eastern Baffin Island (bottom, right), western Greenland (top, right), and Nares Strait with Petermann Fjord (top, left) with pieces of Petermann and Ryder Ice Islands identified as green dots. [Credit: Luc Lesjardins, Canadian Ice Service]

What stands out is that most pieces are close to the coast of Canada. This is expected, because often the ocean moves in ways to balance pressure gradient and Coriolis forces as we live on an earth that rotates once every day around its axis. This force balance holds both in the ocean and the atmosphere. We are all familiar with winds around a low-pressure system such as Hurricane Sandy where the winds move air counter-clockwise around the eye (the center of low pressure). This eye of low pressure in our ocean story is permanently near the center of Baffin Bay. Ocean currents then move water counter-clockwise around this eye. This results in a flow to the south off Canada and a flow to the north off Greenland. On a smaller scale this balance holds also, such as Delaware Bay or Petermann Fjord, but I will not bore you with the details of graduate level physics of fluids in motions … as important as they may be.

So, almost all the ice islands we see in the above imagery will make their way further south towards the Grand Banks off Newfoundland. Some are grounded to the bottom of the shallow coastal ocean and may sit in place for a year, or a month, or until the next high tide will lift the ice off the bottom and move it back into deeper water. Some ice islands will keep moving rapidly, some will further break apart, but none will go away anytime soon. If you want to see some of Petermann’s Ice Islands for yourself, take the ferry from North Sidney, Nova Scotia to Port aux Basques, Newfoundland and Labrador and head for the Great Northern Peninsula. That’s what I hope to do one of the next summers.

ResearchBlogging.org
Johnson, H., Münchow, A., Falkner, K., & Melling, H. (2011). Ocean circulation and properties in Petermann Fjord, Greenland Journal of Geophysical Research, 116 (C1) DOI: 10.1029/2010JC006519

Münchow, A., & Garvine, R. (1993). Dynamical properties of a buoyancy-driven coastal current Journal of Geophysical Research, 98 (C11) DOI: 10.1029/93JC02112

Rignot, E., & Steffen, K. (2008). Channelized bottom melting and stability of floating ice shelves Geophysical Research Letters, 35 (2) DOI: 10.1029/2007GL031765

Nares Strait 2012: First Challenges and Petermann Ice Island Coming

Petermann Glacier’s 2012 ice island is heading south, the Canadian Coast Guard Ship Henry Larsen is heading north, and my passport went through the washer. Ticket agents at Philadelphia airport refused to accept my worn passport to get into Canada. My journey appeared at a dead-end, but ticket agents, U.S. State Department employees in downtown Philadelphia, and a Jordanian cab driver got me to Canada with a new passport, a new ticket, and a new lesson learnt in 4 hours. I did not believe it possible, but it was. I arrived in Canada with an entire day to spare.

Over the years I learnt to plan and budget generously for Arctic research, and then improvise with what is available. I was taught to bring spares of all critical equipment to prepare for loss and failure. I learnt to allow for extra time as missed planes, weather, and who knows what always make tight schedules tighter, like passports going through washers. I learnt that patience, civility, co-operations, and seeing the world through other people’s eyes and responsibilities get me farther than fighting. After I got my PhD in 1992, I learnt that the very people who cause troubles by enforcing rules and regulations are often also the most likely to know the way out of trouble. The ticket agent who denied my passport was also critical to help me get a new one. Thank you, Beth.

Our science party of eight from Delaware and British Columbia and the ship’s crew of 30-40 from Newfoundland will meet on the tarmac of St. John’s tomorrow at 4:30am, fly to and refuel at Iqaluit, Nunavut, and arrive at the U.S. Air Force Base at Thule, Greenland. The crew who got the ship from St. John’s to Thule will return with the plane home. It usually takes two days sailing north by north-west to reach Nares Strait from Thule, but this year the ice will be a challenge far greater than getting a new passport in 4 hours.

Western North-Atlantic and Arctic regions with Greenland in the west (top right) and Canada (left). Blue colors show bottom depth (light blue are shelf areas less than 200-m deep) and grey and white colors show elevations. Nares Strait is the 30-40 km wide channel to the north of Smith Sound, Baffin Bay is the body of water to the south of Thule.


The ice island PII-2012 is moving rapidly towards the outer fjord at a rate that increased from 1 km/day last week to 2 km/day over the weekend. I expect it to be out of the fjord an in Nares Strait by the weekend when we were hoping to recover the moorings with data on ocean currents, ice thickness, and ocean temperature and salinities that we deployed in 2009. The ice island is threatening us from the north: Without a break-up, it is big enough to block the channel as another large ice island did for almost 6 months in 1962.

Petermann Glacier, Fjord, and Ice Island on July 31, 2012 at 08:05 UTC. Nares Strait is to the top left. Petermann Glacier, Greenland is on bottom right. PII-2012 is at the center.


At the southern entrance to Nares Strait, lots of multi-year ice is piling up near the constriction of Smith Sound. Winds and currents from the north usually flush this ice into Baffin Bay to the south, however, the same winds and currents will move the ice island out of Petermann Fjord and into Nares Strait. We will need patience, humility, and luck to get where we need to be to recover our instruments and data. A challenge that cannot be forced, we will likely wait and go with the flow rather than fight nature. We will have to play it smart. We are the only search and rescue ship for others. I am nervous, because this year looks far more difficult than did 2003, 2006, 2007, or 2009. In 2005 we were defeated by the winds, but that is a story for a different day.