Author Archives: Andreas Muenchow

Ocean Weather Below a Greenland Floating Glacier

Sensing the oceans below ice as thick as the Empire State Building is tall, we are revealing some of the mysteries of ocean melting of one of Greenland’s largest glaciers. The expedition to Petermann Fjord last month made possible the deployment of three ocean sensing stations that all call home daily via Iridium satellite phone to send us new data from 800 meters below sea level. The ice of the glacier at our stations is 100 to 300 meters thick and a whimsical cable with 3 tiny wires connects the instruments under the glacier to a home-made computer that calls home daily with new data. I am still stunned at the many marvels of technology that all came together to make this happen.

University of Delaware PhD student Peter Washam at the Ocean-Weather station on Petermann Gletscher after final installation 2015-Aug.-20, 17:00 UTC at 80 39.9697 N and 60 29.7135 W.

University of Delaware PhD student Peter Washam at the Ocean-Weather station on Petermann Gletscher after final installation 2015-Aug.-20, 17:00 UTC at 80 39.9697 N and 60 29.7135 W.

Panoramic view of the ocean-weather station on Petermann Gletscher. View is towards the south-east with Washington Land in the background.  [Photo credit: Peter Washam].

Panoramic view of the ocean-weather station on Petermann Gletscher. View is towards the south-east with Washington Land in the background. [Photo credit: Peter Washam].

It started with an off-the-shelf automated weather station that David Huntley at the University of Delaware put together for me with the non-standard addition of 5 serial ports that each allow one ocean sensor to be connected by cable to the weather station. It continued with the holes that Paul Anker and Keith Nicholls of the British Antarctic Service drilled through Petermann Gletscher. My PhD student Peter Washam was on the ice helping with the drilling, preparing the ocean sensors, and he is now processing some of the new ocean data.

AWS2015

The map above shows Petermann Gletscher (bottom right), Petermann Fjord, and adjacent Nares Strait. The red lines are bottom depths at 500 and 1000 meters while the thick black line shows the location where the 550-m thick glacier sits on bed rock. All glacier ice seaward of this black line is floating with warm ocean waters below. These waters enter the fjord at he sill at the entrance to Petermann Fjord which is about 450 meters deep. The blue dots are locations where last months we collected detailed profiles of ocean temperature salinity, and oxygen. The warmest water inside the fjord and under the glacier enters near the bottom at this sill. The green dots on the glacier are the 3 drill sites where we put our ocean sensors down while red triangles are “fancy” GPS receivers that we placed for almost 2 weeks on the glacier. The one triangle on land (bottom right) is a permanent GPS station at Kap Schoubye that UNAVCO maintains under the code name SCBY. We will reference our moving glacier GPS station (the glacier moves) to this fixed station on bed rock, but that’s a story for another day.

The ocean data are worked up by a small, but wonder group of men and women of all ages working out of the universities of Gothenburg (Sweden), Oxford (England), and Delaware (USA) as well as BAS (England). It is very much an informal group of people who like each other and met in strange ways over the last year or so with all of us juggling way too many projects for which we all have way too many ideas. Bottom-up collaboration and sharing at its best from the bottom up.

Two quick highlights rushed onto these pages before I have to run off to teach a class on signal processing:

Measurements from the ocean weather station up until 2015-Sept.-11 as a function of time where Day-20 is Aug.-20 and Day-32 is Sept.-1. The station provides battery voltage (bottom panel), air and ocean temperatures, wind speed and direction, ice drift from GPS, and atmospheric pressure (top panel).

Measurements from the ocean weather station up until 2015-Sept.-11 as a function of time where Day-20 is Aug.-20 and Day-32 is Sept.-1. The station provides battery voltage (bottom panel), air and ocean temperatures, wind speed and direction, ice drift from GPS, and atmospheric pressure (top panel).

Ocean temperature (black) and salinity (red) observations from below the ice shelf of Petermann Gletscher at 5 different vertical levels from near the bottom (bottom panel) to the ice-ocean surface (surface panel).

Ocean temperature (black) and salinity (red) observations from below the ice shelf of Petermann Gletscher at 5 different vertical levels from near the bottom (bottom panel) to the ice-ocean surface (surface panel).The bottom of the ice shelf is about 90 meters below sea level.

Note that the scales for temperature and salinity are different at different vertical levels. The warmest water is always found near the bottom while both temperature and salinity under the ice shelf vary by a larger amount that we had initially expected. This means that there are direct and fast connections of the ocean under the glacier with waters inside the fjord and beyond. Notice also that air temperatures are well below freezing (0 degrees Celsius) for 2-3 weeks now while the ocean waters are well above freezing (-1.7 degrees Celsius) everywhere. Hence there is no melting at the surface while there is much melting at the bottom of the glacier. While trivial, this emphasizes the controlling influence that the oceans have on glaciers and ice shelves such as Petermann Gletscher. In the meantime, we got much exciting and fun work ahead of us.

Shout of thanks to NASA (and the US tax-payers) who funded this ocean-weather station at the University of Delaware at about $64,000 for a single year and NSF (and again the US taxpayers) who funded the larger ocean- and land-based experiments within which small part was embedded.

Münchow, A., Padman, L., and Fricker, H.A. (2014). Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland from 2000 to 2012, Journal of Glaciology, Vol. 60, No. 221, doi: 10.3189/2014JoG13J135

Johnson, H., Münchow, A., Falkner, K., & Melling, H. (2011). Ocean circulation and properties in Petermann Fjord, Greenland Journal of Geophysical Research, 116 (C1) DOI: 10.1029/2010JC006519

Rignot, E., & Steffen, K. (2008). Channelized bottom melting and stability of floating ice shelves Geophysical Research Letters, 35 (2) DOI: 10.1029/2007GL031765

Oceanographers in Thule, Greenland

Returning from Petermann Fjord and Gletscher, we left the Swedish icebreaker I/B Oden and its fine crew yesterday afternoon. Our military plane to southern Greenland is broken with spare parts needed to be shipped in from Air Force bases in the United States and Germany. Thule Air Force Base (AFB) at Pituffik is the northern-most US military installation that is maintained since the Cold War with lots of help from Danish authorities and workers. Thule AFB is a large airfield and supply center for much of northern Greenland and beyond. Air temperatures are in the 40ties and it feels very warm after sailing south for 3 days to get here.

As last year, the first thing I did after living for 5 weeks in tight quarters on a ship was head out into the wilderness. While almost everyone else was partying ashore after raiding the local supermarket for fresh fruit, vegetables, beer, and wine, Frederik and I headed out the to climb the mountain that I wanted to climb since I first set eyes on it in 2003. We did not set out until well past 6pm local time, but with lots of sunlight even past midnight, we set out. Who knows if and when we may get this opportunity again. There were also some geocaches.

Geocaching map of Thule AFB, North Mountain, and Dundas Mountain. Smiley faces show that I found and opened the hidden treasures.

Geocaching map of Thule AFB, North Mountain, and Dundas Mountain. Smiley faces indicate that I found and opened the hidden treasures.

Frederik is Swedish ecologist whose work around Petermann Fjord was mostly land-based. Leading a group of 3-4 researchers, he was taking an inventory of plant and wild life in a methodical way by setting out a grid 2 meters by 2 meters at random locations. His team then painstakingly counted and recorded every bit of plant, seed, or animal excrement (=shit) that they could find and count. They were living in tents for 5-10 days at a time, returned to the ship via helicopter for a shower, a meal, and to change study area. Within 8 hours his group was usually gone again not to be seen for another 5-10 days.

In contrast to these intense “working hikes,” our leisurely 4 hour stroll was relaxing as he had to record nothing and did not have to lead anyone. Nevertheless, I got blisters on my feet that were well worth this guided nature tour as Frederik patiently answered all my questions on all the trees (1 inch high), all the flowers (1/3 inch), and all the animals that we we saw (falcons, hares, foxes). He also told me that during our 4 hour hike he saw more wild and plant-life than he had seen the entire 4 weeks earlier up north in Hall and Washington Land of Greenland and Ellesmere Island of Canada. There are shades of gray and there are many shades of bare.

On our way out of town we followed the road to get to a bridge that crossed a big stream of run-off from the nearby Greenland ice sheet that was visible in the distance. Quickly, however, we noticed that the dusty roads are not really leading us to where we wanted to go, so we made our own path over the ridge to the north of town called creatively “North Mountain.” From there we hiked down to the beach of an isthmus that connects to the landmark Dundas Mountain with remains of the old village on this spit of sand and gravel. A group of Danes in trucks and on all-terrain vehicles greeted us at the bottom of Dundas Mountains. Frederik later told me that they were mostly trying to get information on women that may have arrived with us, but they also encouraged us to race up the 60 degree slope. The record apparently stands at 6 minutes and 45 seconds, but we were in no mood to race … quite the opposite: We wanted to take in the views and relax amidst stunning natural beauty in the rough:

Once atop I found the geocache I was looking for as well as a trackable treasure. When I recovered this trackable and posted the find online, I got an elated e-mail from Australia where the owner of the treasure lives. The treasure is now with me in Delaware where I will hide for other people to find and move along in a wonderful game of hide and seek and traveling.

Now that I am home again after 6 weeks away without real internet or e-mail access (imagine the horrors), I want to tell some of the many stories that involve a group of people doing science, making discoveries, and share what they find. Most of us are deeply grateful for the privilege to make these discoveries: It is people like you, my dear reader, because the funds for ships and planes and food and fuel and much more comes from organizations like the National Science Foundation, the National Aeronautics and Space Administration, as well as the US Department of Defence, but ultimately the funds all come from tax-paying citizens of a great country.

GPS, Geocaching, and Greenland Glaciers

Navigating ice, ocean, and land, brave women and men have always used the stars for guidance. Just think of the three kings who followed a star to witness the birth of Jesus Christ in Bethlehem 2015 years ago. They were 6 days late. Keeping track of time track was always difficult for navigating, especially at sea and the British Navy lost many ships as a result of poor time keeping. There are books written on the history of determining longitude, the best of which is called, well, “Longitude.” Now why would I ponder these questions and histories two hours before I am boarding the Swedish icebreaker Oden to travel by sea and ice to Petermann Glacier?

The Global Position System (GPS) that many of us have in our smart phones or tiny hand-held devices makes navigating easy. Both measure time as our civilization has put “stars” into space that guide hikers out in the back-country, urban dwellers to the next bar or restaurant, and missiles into a target the size of the dot over the letter “i” on a license plate of a car. Few know that the GPS satellites only sent time from an atomic clock to our GPS receivers and smart phones. Time is of the essence, there is something almost spiritual about time and how to define it. And time is linked to space not just because of Einstein’s theory of relativity, but also the way we measure space by measuring the time that waves travel through space.

Waiting for the plane to get 58 scientists to Thule to board the I/B Oden, I went for a geocaching trip an hour or two from the town of Kangerlussuaq. My wife got me into this 2 years ago as a way to explore areas via hiking without much planning. All we do is enter some GPS position of places where other people have placed “treasures” and we head out to find them. These geocaches are everywhere: within 100 feet of my home, in every city I went to in Poland, Sweden, or Germany, and now Greenland, too. My favorite GPS unit is a little hand-held $99 Garmin eTrex 10. It does a marvelous job to get me anywhere within about 3-6 feet (1-2 meters).

As part of our Petermann research, we also got four “fancy” GPS systems which we want to place on the ice shelf of Petermann Gletscher to measure tidal motions. The water under the glacier is connected to ocean that moves the Empire-State-Building thick ice up and down every 12 hours or so. We do not know by how much, though, and when it moves up and when it moves down. There should also be daily cycles and longer periods caused by winds and waves. Now these fancy $25,000 GPS are able to track over 400 satellites (not just the 9 that my Garmin does) and they receive the time information in a very raw and accurate format at more than one radio frequency in more than one way. If one has several of these, we got four, then it is possible to built a network that reduces common errors in position to a few millimeters in the horizontal, and 1-2 centimeter in the vertical after some smart processing. So these “fancy GPS” can sense the difference of the top of your smart phone from the bottom, and I do not mean its length or width, but its thin height. And this is blowing my mind. We need this accuracy to measure tides, and tides we will measure for the 20-30 days that we are working in and around Petermann Gletscher.

Wish us luck as we are heading from the green part of Greenland in the south to its white (ice), black (ocean), and gray (land) parts. There are few colors where we will be the next 4 weeks. Our internet will be gone, but I will try to send text files and small photos until we return on 4 September or so, but time will be hard to find. Wish all of us luck …

Preparing for Petermann One Day At a Time

Glaciers, Greenland, Adventure, Expedition, Ice, Polar Bears, Narwhales, oh the fun to go to Greenland.

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning]

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning%5D


This romantic notion is false and pretty pictures always lie. To prove my point, I just list what one scientist does 4 days before shipping out to Greenland for 5 weeks. [My wife left last week to visit our grown son in California. She knows the drill, focus, and strain that does not make good company. We have gone through such 4-8 weeks of separation many times during our 20+ years of marriage; her leaving a week before I do works rather well for us]:

04:45 Wake up
05:00 Check e-mail on iPhone in bed
05:05 Read Twitter feed: Canadian research ship diverted to break ice in Hudson Bay
05:10 Check references to outreach-related news
05:15 Read Wilson Quarterly article “The Race to the Arctic” on Arctic developments with global policy impacts
05:30 Shower and Dress
05:45 Check Iridium data collection to Oden, fix minor problem
06:00 Check Hans Island weather, winds still from the north at 10 kts
06:15 Clean up mess cat made, make coffee
06:30 Check latest satellite imagery on Nares Strait, beautiful Arctic lead (upwelling) and sediment plumes from streams and glaciers
07:00 Bicycling to work
07:15 Brief hallway meeting with new grant specialist
07:30 Checking news on Arctic Sea Ice Forums
07:35 Downloading and reading peer-reviewed papers for proposal writing
08:00 Distracted by Tamino’s post about Five signs of denial regarding climate change
08:00 NSF Proposal writing
08:30 Distracted, responding to international e-mails
09:00 Passing links and photos for future press release

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

I am falling behind and feel the tension to get this NSF proposal finished by saturday. NSF stands for National Science Foundation, the proposal is asking for $500,000 to conduct a 3-year experiment with German and Norwegian scientists in the summers of 2016 and 2017. If successful, it will support two graduate students full time for two (MS) and three (PhD) years as well as two technicians for five months total. Peer-review of these proposals is brutal with perhaps a 1:7 success rate on average.

09:15 NSF proposal writing
09:40 Respond to former collaborator on an underwater acoustic communication project
09:45 Back to NSF proposal writing
10:00 Studying Sutherland and Cenedese (2009) on dynamics of the East Greenland Current interacting with canyons as explored by laboratory study
10:30 Converting Latex files to .pdf for uploads to NSF server
11:00 Read and edit UDel Press Release
11:15 Giving university administrators full access to current version of NSF proposal after uploading files to NSF servers
11:20 Heading to coffee shop for short bicycle break
12:00 UNAVCO gear arrived at office
12:05 Re-design the mechanics of the surface mount of the automated weather station to be deployed on Petermann Glacier

UNAVCO GPS systems for deployment on Petermann Gletscher.

12:45 Checking ice and weather in Nares Strait, Arctic Forecast
13:00 Back to proposal, writing/thinking about buoyant coastal currents interacting with canyons
16:00 Meet with PhD student on physics of GPS
16:15 Back to proposal writing
17:30 Graphical layout of proposal
18:15 Bicycle to Main Street for steak + margarita dinner
19:30 Home; set-up overdue MODIS processing
19:45 Edit this list, add links, and photos
19:55 Check Nares Strait weather and DMI Greenland ice
20:15 Daily Iridium data download from Oden works (equipment testing)


20:30 Posting this post
20:45 Editing and updating this post
21:00 Finished processing and posting on my web serverNares Strait MODIS imagery for the week

Petermann Glacier Tidal Heaving

Some glaciers float on the ocean around Antarctica and Greenland. Petermann Gletscher in North Greenland is one of these. It spawned massive Manhattan-sized ice islands in 2010 and 2012. Could tides influence when and where such break-ups occur? After all, the tides under the floating glacier move the ice up and down. But how does a 50 km long, 15 km wide, and 300 m thick floating glacier pivots about its “hinge?” Does it do so like a rigid plate of steel or does it bend and buckle like jelly? I do not know, because nobody has measured the tidal motions of Petermann’s floating ice. So, one of many projects this summer will be to measure tides on Petermann with fancy GPS systems.

Shape of the floating part of Petermann Gletscher (right panel) drom laser altimeters along two tracks flown along the glacier in 2014 (left panel).

Shape of the floating portion of Petermann Gletscher from laser altimeters (right panel) along two tracks flown along the glacier in May of 2014 (left panel).

Martin Jakobsson of Stockholm University posed these questions, sort of, when he asked us American oceanographers, if we had any fancy GPS units to work with one he plans to put high on a cliff overlooking Petermann Fjord. He needs exact positions to map the bottom of the ocean. The cliff-GPS station is fixed while he moves about in a small boat that also has a GPS. Taking the difference of the raw travel times received by the cliff-GPS and the boat-GPS, he can reduce GPS position errors from several meters to several centimeters. People call this differential GPS and he wondered if we oceanographers had any use of it to perhaps give him the tidal corrections he also needs as the measures bottom depths from a boat. Well, this was not initially part of our plan and we did not get funded to study the glacier or the tides under it, but his question got me thinking while Alan Mix of Oregon State University did some organizing. One always squeezes extra science into such great opportunities. Discoveries lurk everywhere to inquiring minds.

Small survey boat loaded onto I/B Oden in Landskrona, Sweden, June 2015.

Small survey boat loaded onto I/B Oden in Landskrona, Sweden, June 2015.

Alan managed to find not one, not two, but three fancy GPS units from an organization that I had never heart of. It is called UNAVCO:

UNAVCO, a non-profit university-governed consortium, facilitates geoscience research and education using geodesy. We challenge ourselves to transform human understanding of the changing Earth by enabling the integration of innovative technologies, open geodetic observations, and research, from pole to pole.

“Geodetic observations” are measurements of locations on the earth’s surface. In the old days surveyors walked about with sextant, clocks, tripods, and optical devices to fix a location and reference it to another. Nowadays satellites and lasers do this faster, but I digress. Suffice it to say, UNAVCO is giving us 3 fancy GPS system to carry with us to Petermann Gletscher to make measurements of tides on the ice. So we can pick 3 locations on the ice where we leave these GPS for the 3-4 weeks next month. I have never done this before, so there will be lots of new learning.

Navigation during early Arctic exploration. Photo taken during a visit of the Peary MacMillan Arctic Museeum at Bowdoin University in Brunswick, Maine.

Navigation during early Arctic exploration. Photo taken during a visit of the Peary MacMillan Arctic Museeum at Bowdoin University in Brunswick, Maine.

I have worked with tides since plunging my head into tidal mud-flats of north-west Germany where I grew up and camping on the shores of the Conwy Estuary in North-Wales where I collected data for my MS thesis. Below I show a 4 week record from three locations in Nares Strait where the tidal elevations range from more than 4 meters at the southern entrance to less than 2 meters in Hall Basin next to Petermann Fjord. The data are from bottom pressure sensors that were deployed for 3-9 years, but I here only want to show the spring-neap cycle. So we already have some idea on how the tides in the ocean next to Petermann Glacier behave.

Sea level fluctuations in meters for 28 days at Discovery Harbor or Fort Conger, Canada near 81.7 N latitude (top), Alexandra Fjord, Canada near 78.9 N latitude (middle), and Foulke Fjord, Greenland near 78.3 N latitude (bottom).

Sea level fluctuations in meters for 28 days at Discovery Harbor or Fort Conger, Canada near 81.7 N latitude (top), Alexandra Fjord, Canada near 78.9 N latiude (middle), and Foulke Fjord, Greenland near 78.3 N latitude (bottom).

Models of tides in Nares Straits do really well if, and only if, the bottom topography is known. And this is where Martin’s mapping of the ocean floor in Petermann Fjord and our tidal observations on the floating glacier come together: We both need good bottom topography, we both use fancy GPS, and we both need to know tides to get accurate bottom depths and we need to know bottom depths to predict tides.