Tag Archives: earth rotation

Preparing for Petermann One Day At a Time

Glaciers, Greenland, Adventure, Expedition, Ice, Polar Bears, Narwhales, oh the fun to go to Greenland.

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning]

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning%5D


This romantic notion is false and pretty pictures always lie. To prove my point, I just list what one scientist does 4 days before shipping out to Greenland for 5 weeks. [My wife left last week to visit our grown son in California. She knows the drill, focus, and strain that does not make good company. We have gone through such 4-8 weeks of separation many times during our 20+ years of marriage; her leaving a week before I do works rather well for us]:

04:45 Wake up
05:00 Check e-mail on iPhone in bed
05:05 Read Twitter feed: Canadian research ship diverted to break ice in Hudson Bay
05:10 Check references to outreach-related news
05:15 Read Wilson Quarterly article “The Race to the Arctic” on Arctic developments with global policy impacts
05:30 Shower and Dress
05:45 Check Iridium data collection to Oden, fix minor problem
06:00 Check Hans Island weather, winds still from the north at 10 kts
06:15 Clean up mess cat made, make coffee
06:30 Check latest satellite imagery on Nares Strait, beautiful Arctic lead (upwelling) and sediment plumes from streams and glaciers
07:00 Bicycling to work
07:15 Brief hallway meeting with new grant specialist
07:30 Checking news on Arctic Sea Ice Forums
07:35 Downloading and reading peer-reviewed papers for proposal writing
08:00 Distracted by Tamino’s post about Five signs of denial regarding climate change
08:00 NSF Proposal writing
08:30 Distracted, responding to international e-mails
09:00 Passing links and photos for future press release

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

I am falling behind and feel the tension to get this NSF proposal finished by saturday. NSF stands for National Science Foundation, the proposal is asking for $500,000 to conduct a 3-year experiment with German and Norwegian scientists in the summers of 2016 and 2017. If successful, it will support two graduate students full time for two (MS) and three (PhD) years as well as two technicians for five months total. Peer-review of these proposals is brutal with perhaps a 1:7 success rate on average.

09:15 NSF proposal writing
09:40 Respond to former collaborator on an underwater acoustic communication project
09:45 Back to NSF proposal writing
10:00 Studying Sutherland and Cenedese (2009) on dynamics of the East Greenland Current interacting with canyons as explored by laboratory study
10:30 Converting Latex files to .pdf for uploads to NSF server
11:00 Read and edit UDel Press Release
11:15 Giving university administrators full access to current version of NSF proposal after uploading files to NSF servers
11:20 Heading to coffee shop for short bicycle break
12:00 UNAVCO gear arrived at office
12:05 Re-design the mechanics of the surface mount of the automated weather station to be deployed on Petermann Glacier

UNAVCO GPS systems for deployment on Petermann Gletscher.

12:45 Checking ice and weather in Nares Strait, Arctic Forecast
13:00 Back to proposal, writing/thinking about buoyant coastal currents interacting with canyons
16:00 Meet with PhD student on physics of GPS
16:15 Back to proposal writing
17:30 Graphical layout of proposal
18:15 Bicycle to Main Street for steak + margarita dinner
19:30 Home; set-up overdue MODIS processing
19:45 Edit this list, add links, and photos
19:55 Check Nares Strait weather and DMI Greenland ice
20:15 Daily Iridium data download from Oden works (equipment testing)


20:30 Posting this post
20:45 Editing and updating this post
21:00 Finished processing and posting on my web serverNares Strait MODIS imagery for the week

Oceanography of Nares Strait Ice Flushing

I need the ice out of Nares Strait, a 20 mile wide and 300 miles long pathway to the North Pole between northern Canada and Greenland. The ice blocks our way to Petermann Fjord where a large glacier pushes thick ice out so sea as a floating ice shelf. We plan to drill through the floating section of the glacier that is about as thick as the Empire State Building is high. The ship to get us there is the Swedish icebreaker Oden (Location Map). She is passing the Faroe Islands to the north-west of Scotland and will arrive in 2 weeks at Thule Air Force Base where we will meet her.

Image of northern Greenland (top right) and Ellesmere Island (center) showing open water as black, land as gray, and sea ice as gray/white. The two red dots are Thule Air Force Base in the south and Petermann Glacier in the north. Note the bands of black water along the coast of Ellesmere Island that result from east to west blowing winds that move ice offshore.

Image of northern Greenland (top right) and Ellesmere Island (center) showing open water as black, land as gray, and sea ice as gray/white. The two red dots are Thule Air Force Base in the south and Petermann Glacier in the north. Note the bands of black water along the coast of Ellesmere Island that result from east to west blowing winds that move ice offshore and reduce the southward flow in Nares Strait.

The voyage from Thule to Petermann usually takes about 2-3 days, but if the sea ice does not flush out with the generally southward currents, then it may take a week or two wrecking havoc to our busy science schedule. So, why is the ice still lingering in Nares Strait this year?

Nares Strait ice cover in July of 2015 (left), 2014 (center), and 2013 (right) from MODIS Terra.

Nares Strait ice cover in July of 2015 (left), 2014 (center), and 2013 (right) from MODIS Terra.

There are three parts to the answer: First, a sturdy ice arch at the southern entrance of Nares Strait has to break. It has done so only last week. Second, a strong and perhaps oscillating flow has to thoroughly collapse the large pieces of ice at a narrow choke point that is Smith Sound. This has not happened yet. And third, a persistent flow to the south has to flush out ice into Baffin Bay to the south faster than it enters from the Arctic Ocean in the north. This flow is much weaker at the moment than is normal, because winds in the Arctic Ocean have been from east to west right now. These winds moved water (and ice) offshore to the north, so sealevel along northern Greenland and Canada drops. We can see this in today’s satellite imagery as prominent black bands of open water along the coast of northern Canada.

Lets take a closer look of this same image and zoom in on the southern part of Nares Strait as it looked this morning.

Collapsing ice arch at the southern entrance to Nares Strait on 13 July 2015 from MODIS AQUA.

Collapsing ice arch at the southern entrance to Nares Strait on 13 July 2015 from MODIS AQUA.

What used to be a solid frozen mass of ice along the Greenland coast (bottom right) has become a broken and loose mass of smaller ice floes. The larger blocks farther from the coast are now sliding southward as the loose ice along the coast reduces friction or lubricates the edges. The sides lose their grip on the ice and the entire construction fails and collapses. A most beautiful video on the stability of arches is posted by Open University here about lines of action or thrust.

All we now need for the ice to flush out of Nares Strait is a weakening or reversal of the winds at the other northern entrances to Nares Strait. Much of the generally southward flow is caused by the ocean’s surface being higher in the north than it is in the south. There are details that I am skipping, but basically much of the flow rolls downhill like a ball. And with the winds up north being from east to west, there is not much of a hill that the water can flow down, so we got somewhat stagnant waters. I have actually measured the height of this “hill of water” many times over the many years with ocean sensors that measure how much water is above them. This figure summarizes 3 years of data collected every 3 hours or so

Graph showing how water flow (called “volume flux”) varies with the steepness of the hill (called “pressure gradient”). The “hill” is at most 10 centimeters or 3 inches) high. [Adapted from Muenchow, 2015]

Now there is more to the “hill” story that is modified near the surface by the earth’s rotation in a fluid that has different densities at different depths. In a nutshell, the surface flow is 2-3 times as strong as the depth averaged flow. Furthermore, the surface flow on the Canadian side of Nares Strait is often twice as strong as that closer to Greenland, but all these spatial variations in flow actually help to smash large pieces of ice by moving and rotating them different sides of the same large piece of ice differently.

So, lets all hope that we get a few days of strong winds from the north flowing south, that should clear Nares Strait quickly before Oden arrives there in 2 weeks time. Those winds from the north not only flush out ice from Nares Strait, they also keep it nicely on one, the Canadian side. Earth rotation does wonderful and magical things to fluids such as water and air.

Muenchow, A, 2015: Volume and freshwater flux observations from Nares Strait to the west of Greenland at daily time scales from 2003 to 2009. J. Phys. Oceanogr., re-submitted July 2015, .pdf

Oceanography and Icebergs in Baffin Bay: LCDR Edward “Iceberg” Smith

In 1928 Edward H. “Iceberg” Smith took the 125 feet long Coast Guard Cutter “Marion” on an 8,100 mile journey from Boston, MA to New York City, NY via Disko Bay, Greenland. Along the way he defined operational Arctic Oceanography to explain and predict iceberg entering the busy sea lanes off North-America. The Titanic was sunk in 1912, the International Ice Patrol was formed in 1914, and LCDR Smith sailed to Greenland in 1928. The data are priceless 85 years later still. I used them to place modern observations from 2003 into a context of climate variations. First, however, let me give credit to one of the pioneers on whose scientific shoulders I stand:

Edward H. "Iceberg" Smith of the US Coast Guard with reversing thermometer.

Edward H. “Iceberg” Smith of the US Coast Guard with reversing thermometer.

“Iceberg” Smith entered the Coast Guard Academy at age 21 in 1910 and served during World War I as a navigator on Atlantic convoy escort duty. After this war his ship was detailed to the International Ice Patrol and he became one of its first scientific observers at age 32 in 1921. As such he was sent for a year to Bergen, Norway in 1925 to learn the latest theories in physical oceanography. Scandinavian explorers like Nansen, Ekman, Sverdrup, Bjerknes, and Helland-Hansen defined physical oceanography at this time by applying physics on a rotating earth to phenomena that they observed from ships sailing at sea or ships frozen in Arctic ice. Much of this revolutionary work is now elementary oceanography taught in introductory courses, but then, nobody knew much about why ice and ocean move they way they do. It was time to put ideas to a thorough test which is what “Iceberg” Smith did, when he got his ship and orders to explore in 1928.

USCGC Marion built in 1927 [from http://laesser.org/125-wsc/]

USCGC Marion built in 1927. Note the scale indicated by a person standing on the lower deck. [From http://laesser.org/125-wsc]

Armed with new ideas, knowledge, and the tiny USCGC Marion “Iceberg” Smith set to out to map seas between Labrador, Baffin Island, and Greenland to explain and predict the number of icebergs to enter the North-Atlantic Ocean. During his 10 weeks at sea he mapped ocean currents from over 2000 discrete measurements of temperature and salinity at many depths. This was before computers, GPS, and electronics. In 1928 this was slow to work with cold water collected in bottles with “reversing thermometers” that cut off the mercury to preserve temperatures measured in the ocean at depth to be read later aboard. Salinity was measured at sea by tedious chemical titrations. Imagine doing all of this from a rocking and rolling shallow draft cutter that bounces in icy seas for 10 weeks within fog much of the time. No radar to warn of icebergs either, and you want to study icebergs, so you move exactly where they are or where you think they are coming from. And they though that the Titanic was unsinkable.

Iceberg in the fog off Upernarvik, Greenland in July of 2003. [Photo Credit: Andreas Muenchow]

Iceberg in the fog off Upernavik, Greenland in July of 2003. [Photo Credit: Andreas Muenchow]

USCGC Healy in northern Baffin Bay in July 2003 with iceberg. Ellesmere Island is in the background.

USCGC Healy in northern Baffin Bay in July 2003 with iceberg. Ellesmere Island is in the background.

The 1928 Marion Expedition was the first US Coast Guard survey in Baffin Bay while the last such expedition took place 2003. Unlike “Iceberg” Smith we then had military grade GPS, radar, and sonar systems. These sensor systems allowed me to directly measure ocean currents from the moving ship every minute continuously from the surface to about 600 meters down. Oh, we also took water samples in bottles, but temperature, depth, and salinity are all measured electronically about 24 times every second. As a result we can actually test, if the physics that had to be assumed to be true in 1928 actually are true. As it turns out, the old theory to estimate currents from temperature and salinity sections works well off Canada, but not so well off Greenland. Furthermore, we found several eddies or vortices in the ocean from the current profiling sonars.

And finally, it took Edward H. “Iceberg” Smith only 3 years to publish most of his data and insightful interpretations while I am still working on both his and my own data 85 years and 10 years later, respectively. Sure, I got more data from a wider range of moored, ship-borne, and air-borne sensors, but I do wonder, if I really consider my data and interpretations as careful and think as thorough as LCDR Smith did. Furthermore, he had no computers and performed all calculations, crafted all graphs, and typed all reports tediously by hand. I would not want to trade, but all this makes me admire his skills, dedication, and accomplishments even more.

Dr Helen Johnson on acoustic Doppler current profiler (sonar to measure ocean velocity) watch aboard the USCGC Healy in Baffin Bay in 2003. [Photo credit: Andreas Muenchow]

Dr Helen Johnson on acoustic Doppler current profiler (sonar to measure ocean velocity) watch aboard the USCGC Healy in Baffin Bay in 2003. [Photo credit: Andreas Muenchow]

P.S.: The New Yorker has three stories on the subject published in 1938, 1949, and 1959. I eagerly await to read those.

ResearchBlogging.orgSmith, E. (1928). EXPEDITION OF U. S. COAST GUARD CUTTER MARION TO THE REGION OF DAVIS STRAIT IN 1928 Science, 68 (1768), 469-470 DOI: 10.1126/science.68.1768.469

Arctic Sea Ice Cover and Extreme Weather Explained

Addendum Sept.-24, 2012: A New Climate State, Arctic Sea Ice 2012 (video by Peter Sinclair).

I just discovered an outstanding interview that Dr. Jennifer Francis of Rutgers University gave to a non-profit community radio station out of Vancouver, British Columbia.

Jennifer Francis Interview 20120910

She connects and explains global warming, its much amplified signal in the Arctic, the extreme record minimal Arctic sea ice cover this summer, and how the warming Arctic and its disappearing sea ice impacts our weather in the northern hemisphere by slowing down the atmospheric jet stream separating polar from mid-latitude air masses. She explains all of this in non-technical language without loss of accuracy.

Dr. Jennifer Francis, Rutgers University [Photo Credit: ARCUS]

If this program piques your interest and you want to read more, Andrew Revkin of the New York time has led an informed discussion at his New York Times blog Dot Earth. And finally, Climate Central presented and illustrated Dr. Francis’ observations and ideas rather well with graphics and videos.

Ice Island Flotilla From Petermann Glacier Continue Southward Flow

More icebergs and ice island from Greenland are heading south along northern North-America this year. Petermann Glacier’s first piece arrived last year off Newfoundland causing a local tourist sensation for a stunning display of ice along its shores. There are many more pieces from Petermann to come for a few more years.

Track of Petermann Ice Island from Aug.-2010 through Aug.-2011 traveling in shallow water from northern Greenland along Baffin Island and Labrador to Newfoundland.

April 29/30, 2012 locations of Petermann Ice Island 2010 on their way south along northern North America. [Credit: Luc Desjardins, Canadian Ice Service]

Yet, how come that these arrivals are both so predictable in their pattern, but are almost impossible to pin down for an exact location and time? The answer involves mystical and fake forces, stunningly beautiful experiments, elegant mathematical equations, and, most important of all: spin.

The earth spins rapidly around its axis and neither ocean nor glaciers leave the planet for outer space. The obvious answer that gravity holds all the pieces in place is neither the correct nor the full answer. A subtle balance of several other forces makes Planet Earth the perfect place to keep us supplied with water to drink and air to breath. Additional forces besides gravity relate to the difference in pressure between the top and the bottom of the ocean as well as the rotational force that forces our car off the road if we speed too fast around a curve. The net effect of these is that earth fatter at the equator than at the North Pole. There appears to be more of gravity pulling us in at the North Pole than there is at the equator. Put another way, a scale measuring our own weight dips almost a pound more in Arctic Greenland than it does in the tropical forests of Borneo even if we do it naked in both places. Lose a pound of your weight instantly, travel to the far north. (GRACE)

This makes no sense intuitively, but common sense and intuition help little when it comes to how the ocean’s water and the atmosphere’s air move on a rotating planet. For example, we all know intuitively that a down-pour of rain flows down a slope into the ditch. It requires work to bring water up to the top of a hill or into the water towers to make sure that water flows when we open the faucet. Not true for the ocean at scales that relate to climate, weather, and changes of both. Here all water flows along, not down the hill. Better yet, it requires no work at all to keep it moving that way for all times. This is why Greenland’s ice keeps coming our way as soon as pieces break off. The earth’s spin makes it go around the hill, to speak loosely of pressure differences. Winds and friction have little effect. The ocean’s natural and usually stable state is in geostrophic balance. Geostrophy is a fancy word for saying that the ocean’s water flows along, not down a hill, because it is balanced by a fake and mystical Coriolis force that I will not explain. I teach a graduate class on Geophysical Fluid Dynamics for that.

In technical language, most of the oceans tend to flow along not down a pressure gradient. A kettle of boiling water discharges water from high pressure inside the kettle to the lower pressure in the kitchen. Yet the steam dissolved in the atmosphere moves around high or low-pressure systems. That’s how we read weather maps: Clockwise winds around high-pressure over Europe, North-America, and Asia to the north of the equator, counter-clockwise winds around low-pressure systems. If I apply this spin-law to Baffin Bay containing all the icebergs and ice islands, the spin rule states that these large and deep pieces flow along lines where the earth’s local rate of rotation, lets call it planetary spin f, divided by the local water depth, lets call it H, is a constant. So, to a first approximation, the icebergs and ice islands flow along a path where f/H is constant. If the planetary spin is constant, then the ice island follow lines of constant water depth H. There is more to the story, much more, such as the effects of waters of different densities residing next to each other, but I better continue this later, as I got a dinner date with a sweetheart and “Thermal Wind” can wait 😉