Tag Archives: Hans Island

Preparing for Petermann One Day At a Time

Glaciers, Greenland, Adventure, Expedition, Ice, Polar Bears, Narwhales, oh the fun to go to Greenland.

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning]

Swedish icebreaker I/B Oden 22 July 2015 on its way to Thule. [Photo Credit: https://twitter.com/SjoV_isbrytning%5D


This romantic notion is false and pretty pictures always lie. To prove my point, I just list what one scientist does 4 days before shipping out to Greenland for 5 weeks. [My wife left last week to visit our grown son in California. She knows the drill, focus, and strain that does not make good company. We have gone through such 4-8 weeks of separation many times during our 20+ years of marriage; her leaving a week before I do works rather well for us]:

04:45 Wake up
05:00 Check e-mail on iPhone in bed
05:05 Read Twitter feed: Canadian research ship diverted to break ice in Hudson Bay
05:10 Check references to outreach-related news
05:15 Read Wilson Quarterly article “The Race to the Arctic” on Arctic developments with global policy impacts
05:30 Shower and Dress
05:45 Check Iridium data collection to Oden, fix minor problem
06:00 Check Hans Island weather, winds still from the north at 10 kts
06:15 Clean up mess cat made, make coffee
06:30 Check latest satellite imagery on Nares Strait, beautiful Arctic lead (upwelling) and sediment plumes from streams and glaciers
07:00 Bicycling to work
07:15 Brief hallway meeting with new grant specialist
07:30 Checking news on Arctic Sea Ice Forums
07:35 Downloading and reading peer-reviewed papers for proposal writing
08:00 Distracted by Tamino’s post about Five signs of denial regarding climate change
08:00 NSF Proposal writing
08:30 Distracted, responding to international e-mails
09:00 Passing links and photos for future press release

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

My littered office with 2 (of 10) drums of cable to connect ocean sensors through 300 m thick ice to Iridium satellite phone at the surface.

I am falling behind and feel the tension to get this NSF proposal finished by saturday. NSF stands for National Science Foundation, the proposal is asking for $500,000 to conduct a 3-year experiment with German and Norwegian scientists in the summers of 2016 and 2017. If successful, it will support two graduate students full time for two (MS) and three (PhD) years as well as two technicians for five months total. Peer-review of these proposals is brutal with perhaps a 1:7 success rate on average.

09:15 NSF proposal writing
09:40 Respond to former collaborator on an underwater acoustic communication project
09:45 Back to NSF proposal writing
10:00 Studying Sutherland and Cenedese (2009) on dynamics of the East Greenland Current interacting with canyons as explored by laboratory study
10:30 Converting Latex files to .pdf for uploads to NSF server
11:00 Read and edit UDel Press Release
11:15 Giving university administrators full access to current version of NSF proposal after uploading files to NSF servers
11:20 Heading to coffee shop for short bicycle break
12:00 UNAVCO gear arrived at office
12:05 Re-design the mechanics of the surface mount of the automated weather station to be deployed on Petermann Glacier

UNAVCO GPS systems for deployment on Petermann Gletscher.

12:45 Checking ice and weather in Nares Strait, Arctic Forecast
13:00 Back to proposal, writing/thinking about buoyant coastal currents interacting with canyons
16:00 Meet with PhD student on physics of GPS
16:15 Back to proposal writing
17:30 Graphical layout of proposal
18:15 Bicycle to Main Street for steak + margarita dinner
19:30 Home; set-up overdue MODIS processing
19:45 Edit this list, add links, and photos
19:55 Check Nares Strait weather and DMI Greenland ice
20:15 Daily Iridium data download from Oden works (equipment testing)


20:30 Posting this post
20:45 Editing and updating this post
21:00 Finished processing and posting on my web serverNares Strait MODIS imagery for the week

Nares Strait 2012: Renske’s View from the Helicopter

As has been mentioned before on this blog, Dr. Renske Gelderloos, from Oxford University, is a fellow traveler on the CCGS Larsen this summer.  She, too, is blogging about her experience.  Below we reblog her post on the helicopter trip, another exciting and beautiful account of doing science in the Arctic, this one even with a couple pictures!  [Note that the pictures in the blog post are from other trips to the same area — limited internet connectivity to the ship does not permit transmission of current images.]  We will post some of her other entries here, but you can find her blog directly at this link.

Nares Strait from the air, and the first CTD section

5 August 2012

Today started with a nice surprise! During the eight-o-clock science meeting after breakfast the chief officer popped in to say that the helicopter would fly out for an ice survey and that it could take two extra passengers. I immediately volunteered, and as Allison and I had never flown in a helicopter before we would be the lucky ones today.

Ice along the Ellesmere Island coast viewed from the helicopter during an ice survey in 2007.

Together with helicopter pilot Don and ice surveyor Erin we flew off in northeasterly direction. Erin’s job was to maps the ice conditions in the channel ahead of the boat, and see whether there was possibly a better route (less ice-covered) for the boat to take. As Hans Island lay in the helicopter range, we decided to land on this island and do a quick check of the weather station there. The weather station looks like a pole on the top of the island (Hans Island is basically a bit-oversized rock…), firmly held down to the ground with three strings. On top of the pole is a weather vane that also measures the wind speed, and attached to the pole on other heights are a thermometer and a fancy measurement device that measures the incoming solar radiation. The pole also has batteries and a solar panel to provide electricity, and a communication device that sends the data to the more populated part of the world so that it is available immediately. This is unlike our oceanographic moorings under water, which we need to physically recover on the site before we can get the data. Dave had asked us to take photos of the instruments, so we landed the helicopter for a close look. All the instruments appeared to be in remarkably good shape. The previous time this weather station was serviced a polar bear had taken a fancy on it, but fortunately none of the kind had happened this time. When we had done all our duties we flew back over Ellesmere Island to see a glacier from closer by: astonishing!

At the end of the day we finally arrived at the site of our mooring array. As we need the deck crew for mooring recoveries (in particular for the crane and the FRC, which is the small inflatable boat that can be launched from the ship), and the deck crew on Canadian coastguard vessels works from 8 to 5 on weekdays, chief scientist Humfrey decided to do a CTD (Conductivity-Temperature-Depth) section first. This had the additional advantage that we would have the CTD data from this section and the moorings overlapping for an intercomparison between the two.

The multi-coloured mountains of Ellesmere Island

Around 7 o’clock in the evening we were ready for the first trial cast. We had already done ‘dry’ tests, which means we just checked whether the computer was willing to talk to the CTD sensors and the other way around, and whether the values we got were somewhat reasonable. The quantities we measure are the conductivity, the temperature and the pressure. From those quantities we can calculate the salinity of the water (the other way to measure salinity is to take a water sample and take it to a laboratory, so by using the conductivity of the water we can measure the salinity at every location from the surface to the bottom which gives a lot more information than just a few samples), as well as the density. For a CTD cast the sensors are tied to a frame, and the frame is lowered, using a winch, from the deck to the water and subsequently from the surface to just above the bottom of the ocean. The data is sent to our computer real time through the cable that is holding the frame, so we can do a visual inspection and get all excited during the cast. After the trial run things started to really speed up and everyone took up a task. Humfrey supervised, Jo did the winch, Dave (after a subtle hint) kindly provided tea with goodies (thanks Dave!), I monitored the data on the computer screen and made sure the data was saved, and Andreas did a quick-and-dirty first post-processing of the data which enabled us all to see the results of our measurements in almost real time. Just before midnight the section was completed, I took some pictures of the midnight sun and we could all go to sleep.