Category Archives: History

Scoresby Sund – Greenland’s Longest Fjord

Fog, fog, and more fog is all we saw as we approached Scoresby Sund aboard the German research ship Maria S. Merian from Denmark Strait to the south-east. The fog lifted as soon as we passed Kap Brewster and began work on ocean currents and waters at the entrance of this massive fjord system. My artist friend and wife Dragonfly Leathrum posted a wonderful travel essay with many photos that did not include these:

We were here to explore how the coastal ocean off Greenland may relate to Daugaard-Jensen Gletscher at the head of the fjord some 360 km away (195 nautical miles or about a day of constant steaming at 8 knots). This tidewater glacier discharges as much icy mass out to sea as does Petermann Gletscher or 79N Glacier to the north or half as much as Helheim, Kangerdlugssuaq, and Jacobshavn Glaciers to the south. Unlike all those other glaciers, Daugaard-Jensen and its fjord are still largely unexplored.

Location Map of Scoresby Sund. Kap Brewster is at bottom right while Daugaard-Jensen Gletscher 360 km away is near the top left.

Location Map of Scoresby Sund. Kap Brewster is at bottom right while Daugaard-Jensen Gletscher 360 km away is near the top left.

Part of the chart of the East Greenland coast drawn up by William Scoresby Jr. in 1822, showing the numerous features that he names in Liverpool land (Liverpool Coast) and adjacent areas. From: Scoresby (1823)

Part of the chart of the East Greenland coast drawn up by William Scoresby Jr. in 1822, showing the numerous features that he names in Liverpool land (Liverpool Coast) and adjacent areas. From: Scoresby (1823)

While the entrance between Kap Tobin and Kap Brewster was known to whalers in the early 19th century, it was William Scoresby Sr. after whom the fjord is named. His scientist son William Scoresby Jr. mapped coastal Greenland between 69.5 and 71.5 North latitude during his last voyage in 1822. Nobody entered the fjord until 1891 when Lt. Carl Ryder of the Danish Navy sailed deep into the fjord to explore the area for a year with 10 companions. They built a hut next to a natural port that they named Hekla Harbor. Amazingly, they also measured ocean temperature profiles almost every month from the surface to 400 m depth. I found these data at the National Ocean Data Center of the United States Government.

Ocean temperature (left panel) and salinity (right panel) as it varies with depth in different years. Blue represents measurements from 1891/92, red from 1990, and black from 2018.

Ocean temperature (left panel) and salinity (right panel) as it varies with depth in different years. Blue represents measurements from 1891/92, red from 1990, and black from 2018.

Searching for data from Scoresby Sund, I found 17 profiles of water temperature with data from at least 10 depths. Funny that 12 of these profiles were collected in 1891 and 1892 while the other 5 profile contain salinity measurements made in 1933, 1984, 1985, 1988, and 2002. The 1988 cast was taken by an Icelandic vessel and also contained continous data from a modern electronic sensor rather than waters collected by bottles. I “found” another 4 modern sensor profiles collected in 1990 at the Alfred-Wegener Institute in Germany.

That’s pretty much “it” … until we entered the fjord in 2018 when we collected another 27 casts thus more than doubling the ocean profiles. More exciting, though, is the very large shift in ocean temperatures from 1990 to 2018. The 1990 temperatures are very similar to the 1891/92 temperatures, but all old temperatures (also from 1933 and 1985, not shown) are all about 1 degree Celsius (2 degrees Fahrenheit) cooler than those we measured in 2018. Why is this so? Does such warming originate from outside the fjord? If so, how does the warmer Atlantic water at depth in deep water crosses the 80 km wide shallow continental shelf to enter Scoresby Sund? Are any of these ideas supported by actual data? What data are there?

Ocean data location off eastern Greenland collected from 1890 to 2010 that reside in NODC archives. Red are water bottle data while yellow are modern electronic sensor measurements. The white box bottom left is the entrance to Scoresby Sund. Light blue areas are water less than 500 m deep while dark blue shades are deeper than 1000 m.

Ocean data location off eastern Greenland collected from 1890 to 2010 that reside in NODC archives. Red are water bottle data while yellow are modern electronic sensor measurements. The white box bottom left is the entrance to Scoresby Sund. Light blue areas are water less than 500 m deep while dark blue shades are deeper than 1000 m.

Discoveries in science can be pretty basic, if one is at the right location at the right time with the right idea. Also, there is more data to the south that I did not yet look at to investigate the question of what causes the warming of bottom waters in Scoresby Sund.

EDIT Dec.-31, 2019: Replace “warmer” with “cooler” when comparing 1891 and 1990 (cooler) to 2018 (warmer) water temperatures.

Polar Bears and Guns and Politics

Polar bears are endangered and need protection. They hunt and eat meat to survive. Seals are such meat as are scientists walking and working on the sea ice. I am planing an experiment in polar bear habitat. Do I need a gun to protect myself and my students working with me? About 10 people told me “YES” last week, all with experience working in polar bear habitat. Who am I to say no? Encounters between bears and people happen, but only rarely. None of the 10 people advising me to carry a shotgun or rifle ever discharged their weapon or had a bear encounter.

Polar bear as seen in Kennedy Channel on Aug.-12, 2012. [Photo Credit: Kirk McNeil, Labrador from aboard the Canadian Coast Guard Ship Henry Larsen]

Polar bear as seen in Kennedy Channel on Aug.-12, 2012. [Photo Credit: Kirk McNeil, Labrador from aboard the Canadian Coast Guard Ship Henry Larsen]

In 3 month’s time I hope to do ~20 day trips from Thule Air Base near Pituffik, Greenland to explore the oceanography and acoustics of the local fjord covered by sea ice. The US National Science Foundation supports this work, maintains a dormitory where we sleep, and provides us with two snowmobiles. We will use these motorcycles on skies to reach science stations on the ice covering Wolstenholme Fjord. We will drill 10” holes through 3-5 feet of sea ice, set-up an electric winch connected to a small generator, and probe the ocean’s temperature, salinity, bottom depth, and ice thickness to prepare for a quiet acoustic communication system to move data under water from the outer fjord to the pier at Thule and the internet.

Thule-NSF2017

Leading this science effort, I will have to estimate and manage potential risks which include encounters with polar bears. I will have to decide how much money to allocate to each risk that then may not be available for other activities such as to support students, buy better sensors, or return in the summer. The first and almost always best response is to hire a local hunter who knows the area along with its bears, ice, and weather. There are about 600 people living in Qaanaaq about 100 miles to the north. Most of them are children and grand-children who were forcibly removed from Pituffik in 1952 when more than 13,000 Americans built a large air field during the height of the Cold War. The local llanguage spoken in remote Qaanaaq is the Inuktitut dialect of north-west Greenland, the first foreign language learnt in school is Danish, and English is not widely spoken, however, Qaanaaq has two non-Inuit villagers who originate from Denmark and Japan.

Relations between Qaanaaq and Thule Air Base are complex and sensitive with regard to politics and finances. One of many perspective is that of Kim Petersen who writes in Dissident Voice about “The Struggle against Colonialism and Imperialism in Kalaallit Nunaat.” Kalaallit Nunaat refers to Greenland in the local language. While the forced removal of native populations from Pituffik to Qaanaaq in 1952 and the crash of a nuclear armed B-52 bomber into Wolstenholme Fjord in 1968 are not in dispute, the political arguments presented seem to me rather narrow, one-dimensional, and rooted in a tired ideological Left-Wing mode of conspiracy-thinking. Does this perspective represent the community of Qaanaaq? Perhaps I need to ask someone who may know:

Working on the sea ice off northern Greenland [Photo credit, Steffen Olsen]

Working on the sea ice off northern Greenland [Photo credit, Steffen Olsen]

It is not straight-forward to bring a gun to Greenland as it requires a large amount of paper work. Another layer of regulations relates to bringing a gun to an US military installation. Shooting a polar bear is a burocratic and political nightmare, because strict quotas exist for the “taking” of polar bears. International complications include Canada, because the quotas are assigned to Canadian and Greenlandic hunters from the same bear population. It is a sensitive topic in many dimensions, a riddle for which I have no solution.

How much time do I spent to prepare for an unlikely event such as a fatal polar bear encounter? Could I not argue with ethics that were instilled into me when hiking in the back-country of Denali National Park (no guns there). Park rangers then told me that I enter bear habitat and should do so respectfully with minimal impact. They gave me useful pointers on how to lower contact and I saw no bears hiking for 4 days alone without a gun, but grizzlies eat berries while polar bears do not.

So, should I carry a gun, if I am not ready to kill a bear while working in bear country? I can accept the consequences of injury and death for myself, however, I cannot do so for those who are with me. Perhaps this then is a path to a solution: Discuss this with all who will be with me on the ice.

The Ice Shelf of Petermann Gletscher, North Greenland and its ocean below: Introductions

“In 1921 owing to starvation I had to go directly from Cape Heiberg-Juergensen to our cache at Cape Agassiz … during this journey the greater part of the glacier was mapped.” — Lauge Koch, 1928

Traveling by dog sled, Geologist Lauge Koch mapped Petermann Gletscher in 1921 after he and three Inuit companions crossed it on a journey to explore northern North Greenland. They discovered and named Steensby, Ryder, and H.C. Ostenfeld Glaciers that all had floating ice shelves as does Petermann (Ahnert, 1963; Higgins, 1990). In Figure 1 I reproduce the historic map of Koch (1928) that also contains his track in in 1917 and 1921 both across the terminus and across its upstream ice stream. In 1921 all four starved travelers returned safely after living off the land. Four years earlier, however, they were not so lucky: two traveling companions died on a similar journey in 1917 (Rasmussen, 1923).

Maps of Petermann Gletscher by Lauge Koch from 1917 and 1921 dog sleds and 2015 from MODIS-Terra.

Only 20 years after Lauge Koch’s expeditions by dog sled, air planes and radar arrived in North Greenland with the onset of the Cold War. The Arctic Ocean to the north became a battle space along with its bordering land and ice masses of northern Greenland, Ellesmere Island, Canada, Alaska, and Siberia. Weather stations were established in 1947 at Eureka by aircraft and in 1950 at Alert by US icebreaker to support military aviation (Johnson, 1990). In 1951 more than 12,000 US military men and women descended on a small trading post called Thule that Knud Rasmussen and Peter Freuchen had established 40 years earlier to support their own and Lauge Koch’s dog-sled expeditions across Greenland (Freuchen, 1935). “Operation Blue Jay” built Thule Air Force Base as a forward station for fighter jets, nuclear armed bombers, and early warning radar systems. The radars were to detect ballistic missiles crossing the Arctic Ocean from Eurasia to North America while bombers were to retaliate in case of a nuclear attack from the Soviet Union.

An F-102 jet of the 332d Fighter-Interceptor Squadron at Thule AFB in 1960. [Credit: United States Air Force]

An F-102 jet of the 332d Fighter-Interceptor Squadron at Thule AFB in 1960. [Credit: United States Air Force]

About another 60 years later, the jets, the bombers, and the communist threat were all gone, but the Thule Air Force Base is still there as the gateway to North Greenland. It is also the only deep water port within a 1,000 mile radius where US, Canadian, Danish, and Swedish ships all stop to receive and discharge their crews and scientists. Since 2009 Thule AFB also serves as the northern base for annual Operation IceBridge flights over North Greenland to map the changing ice sheets and glaciers.

The establishment of military weather stations and airfields in the high Arctic coincided with the discovery of massive ice islands drifting freely in the Arctic Ocean. On Aug.-14, 1946 airmen of the 46th Strategic Reconnaissance Squadron of the US Air Force discovered a moving ice islands with an area of about 200 square that was kept secret until Nov.-1950 (Koenig et al, 1950). Most of these ice islands originated from rapidly disintegrating ice shelves to the north of Ellesmere island (Jeffries, 1992; Copland 2007), however, the first historical description of an ice islands from Petermann Gletscher came from Franz Boas in 1883 who established a German station in Cumberland Sound at 65 N latitude and 65 W longitude as part of the first Polar Year.

Petermann Ice Island of 2012 at the entrance of Petermann Fjord. The view is to the north-west with Ellesmere Island, Canada in the background. [Photo Credit: Jonathan Poole, CCGS Henry Larsen]

Petermann Ice Island of 2012 at the entrance of Petermann Fjord. The view is to the north-west with Ellesmere Island, Canada in the background. [Photo Credit: Jonathan Poole, CCGS Henry Larsen]

Without knowing the source of the massive tabular iceberg the German physicist Franz Boas reported detailed measurements of ice thickness, extend, and undulating surface features of an ice island in Cumberland Sound that all match scales and characteristics of Petermann Gletscher (Boas, 1885). These characteristics were first described by Dr. Richard Croppinger, surgeon of a British Naval expedition in 1874/75 (Nares, 1876). Dr. Croppinger identified the terminus of Petermann Gletscher as a floating ice shelf when he noticed vertical tidal motions of the glacier from sextant measurements a fixed point (Nares, 1876). His observations on tides were the last until a group of us deployed 3 fancy GPS units on the glacier last summer.

These fancy GPS receivers give centimeter accuracy vertical motions at 30 second intervals. Here is what the deployment of 3 such units in August of 2015 gives me:

Vertical (top) and horizontal (bottom) motion of Petermann Gletscher from GPS referenced to a GPS base station on bed rock at Kap Schoubye. Note the attenuation of the tide from 26 km sea ward of the grounding line (red) to at the grounding line (black) and 15 km landward of the grounding line (blue). The horizontal location motion has the mean motion removed to emphasize short-term change over the much, much larger forward motion of the glacier that varies from about ~700 (black) to ~1250 meters per year (red).

Vertical (top) and horizontal (bottom) motion of Petermann Gletscher from GPS referenced to a GPS base station on bed rock at Kap Schoubye. Note the attenuation of the tide from 26 km sea ward of the grounding line (red) to at the grounding line (black) and 15 km landward of the grounding line (blue). The horizontal location motion has the mean motion removed to emphasize short-term change over the much, much larger forward motion of the glacier that varies from about ~700 (black) to ~1250 meters per year (red).

We have indeed come a far way during the last 150 years or so. Mapping of remote landscape and icescape by starvation and dog-sled has been replaced by daily satellite imagery. Navigation by sextant and a mechanical clock has been replaced by GPS and atomic clock whose errors are further reduced by a local reference GPS. These fancy units and advanced data processing allow me to tell the vertical difference between the top of my iPhone sitting on a table in my garden from the table.

Working at in the garden at home preparing for field work.

Working at in the garden at home preparing for field work near Petermann Fjord.

P.S.: This is the first in a series of essays that I am currently developing into a peer-reviewed submission to the Oceanography Magazine of the Oceanography Society. The work is funded by NASA and NSF with grants to the University of Delaware.

Ahnert, F. 1963. The terminal disintegration of Steensby Gletscher, North Greenland. Journal of Glaciology 4 (35): 537-545.

Boas, F. 1885. Baffin-Land, geographische Ergebnisse einer in den Jahren 1883 und 1884 ausgeführten Forschungsreise. Petermann’s Mitteilungen Ergänzungsheft 80: 1-100.

Copland, L., D.R. Mueller, and L. Weir. 2007. Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters 34 (L21501): doi:10.1029/2007GL031809.

Freuchen, P. 1935. Arctic adventures: My life in the frozen North. Farrar & Rinehard, NY, 467 pp.

Higgins, A.K. 1990. North Greenland glacier velocities and calf ice production. Polarforschung 60 (1): 1-23.

Jeffries, M. 1992. Arctic ice shelves and ice islands: Origin, growth, and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. Reviews of Geophysics 30 (3):245-267.

Johnson, J.P. 1990. The establishment of Alert, N.W.T., Canada. Arctic 43 (1): 21-34.

Koch, L., 1928. Contributions to the glaciology of North Greenland. Meddelelser om Gronland 65: 181-464.

Koenig, L.S., K.R. Greenaway, M. Dunbar, and G. Hattersley-Smith. 1952. Arctic ice islands. Arctic 5: 67-103.

Münchow, A., K.K. Falkner, and H. Melling. 2015. Baffin Island and West Greenland current systems in northern Baffin Bay. Progress in Oceanography 132: 305-317.

Münchow, A., L. Padman, and H.A. Fricker. 2014. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology 60 (221): doi:10.3189/2014JoG13J135.

Nares, G. 1876. The official report of the recent Arctic expedition. John Murray, London,

Rassmussen, K., 1921: Greenland by the Polar Sea: the Story of the thule Expedition from Melville Bay to Cape Morris Jessup, translated from the Danish by Asta and Rowland Kenney, Frederick A. Stokes, New York, NY, 327 pp.

Mapping North Greenland 100 years ago

Living off the land, Greenland’s early explorers ate their dogs, fungi, and roots of plants a few inches high to not starve to death. There is nothing romantic in the detailed reports of Knud Rasmussen, Peter Freuchen, and Lauge Koch that mapped in much detail coastlines, glaciers, and fjords of North Greenland between Thule in the west and Independence Fjord in the east. These Danes worked and lived closely with Inuit hunters and their families at what still is the northern edge of where a small number of people can survive by hunting seals, walrus, whales, and polar bears on the ice and musk ox, reindeer, and rabbits on land. Most people did not live as long and as well as we do now, because life and food were always in short supply.

Ascent of the Inland ice in April 1912 as the First Thule Expedition starts from Clemens Markham's Glacier to Independence Fjord. All 4 explorers returned, but only 8 of the 54 dogs did.

Ascent of the Inland ice in April 1912 as the First Thule Expedition starts from Clemens Markham’s Glacier to Independence Fjord. All 4 explorers returned, but only 8 of the 54 dogs did.

I am reading the reports of the First Thule Expedition of 1912 (4 people), the Second Thule Expedition of 1917 (7 people), and the Bicentenary Jubilee Expedition of 1921 (4 people). Each person had its own dog sled team with 10-14 dogs per team. Knud Rasmussen and Peter Freuchen with Uvdloriaq and Inukitsoq successfully crossed the ice sheet in 1912 from east to west and back. Only 5 of the 7 members of the Second Thule Expedition returned, because Greenlander Hendrik Olsen disappeared while hunting wolves which may have killed him and the Swedish scientist Dr. Thorild Wulff starved to death when he gave up walking as witnessed by Lauge Koch and Inuit Nasaitsordluarsuk and Inukitsoq.

Map detail of Inglefield Land with tracks from Second Thule Expedition after leaving the ice sheet, from Rasmussen (1923). Humboldt Glacier is on the right with Kane Basin to the top.

Map detail of northern Inglefield Land with tracks from Second Thule Expedition after leaving the ice sheet with the location of Dr. Wulff’s death. Humboldt Glacier is on the right with Kane Basin to the top. From Rasmussen (1923).

This last death cast a life-long spell on Lauge Koch who never forgave Knud Rasmussen and Peter Freuchen for insisting on a formal Court of Inquiry in local Greenland and not remote Denmark to clear Lauge Koch of any wrong-doing. Both believed that Koch had acted properly when he choose to live and walk and not starve with Wulff, but they felt that local Inuit witnesses and local knowledge in Greenland would make the legal task to clear Koch easier sooner than a more removed Court in Denmark.

Knud Rasmussen (right) and Lauge Koch (left). [Photo: Holger Damgaard, National Library of Denmark.

Knud Rasmussen (right) and Lauge Koch (left). [Photo: Holger Damgaard, National Library of Denmark.

The Freuchen family on a visit to Denmark: Naravana, Pipaluk, Peter, and Mequsaq [Source: Freuchen, P., 1953: Vagrant Viking. Julian Messner Inc., NY, 312 pp.]

The Freuchen family on a visit to Denmark: Naravana, Pipaluk, Peter, and Mequsaq [Source: Freuchen, P., 1953: Vagrant Viking. Julian Messner Inc., NY, 312 pp.]

These Danish expeditions represent the second phase of exploration of North Greenland after the quest of national glory to reach the farthest north by British and Americans was settled when Robert Peary claimed to have reached the North Pole in 1909. The many American and English expeditions through Nares Strait from about 1853 (Elisha Kane) had relied on native guides, hunters, and polar skills, but the sheer number of whites and their massive material wealth change both local cultures and wildlife. For example, the early Europeans and American explorers provided guns and new technologies which were traded for furs, clothing, and local knowledge of survival. In return Inuit families provided food, clothing, and native polar technologies. These often proved crucial for survival as demonstrated by Joe Eberling and Hans Hendrik with their families who kept 18 people alive for 6 months in 1873 when their party of British and German men was stranded on an ice floe drifting more than 1800 miles to the south until they were picked up by a whaling ship off Labrador.

After the “Imperial” expeditions ended with the “conquest of the North Pole” in 1909, the local Inuit were left without contact to southern material goods such ammunition for their guns until Knud Rasmussen and Peter Freuchen privately founded the Thule Trading Post in Westenholme Fjord. Their goal was to set up a base to support their aspiration to explore and map northern Greenland via small expeditions and to show a link between Denmark and the people living in what was then called the Thule district of Greenland. Their choice of location was excellent and even today, Thule is still the hub to get to northern Greenland by ship or by air. I traveled through Thule in 2003, 2006, 2007, 2009, 2012, and 2015 as I boarded US, Canadian, or Swedish icebreaker at this only deep water north of the polar circle outside Scandinavia.

Inner section of Westenholme Fjord to the north-east of Thule AFB as seen on the descent from Dundas Mountain during sunset on Sept.-2, 2015,

Inner section of Westenholme Fjord to the north-east of Thule AFB as seen on the descent from Dundas Mountain during sunset on Sept.-2, 2015,

Peter Freuchen, Lauge Koch, and Knud Rasmussen were all in their 20ies and 30ies when they traveled across a harsh, unvisited, and at times beautiful landscape. Despite local help, skill, and knowledge to adapt to this environment, Greenland almost killed them by starvation or accident as it did to some of their companions. They all were excellent writers and communicators who found the moneys to pay for their adventures in creative ways. Knud died young in 1933 at age 54 in Copenhagen while Peter buried his Inuit wife Navarana in 1921 when he was only 35 years old, but lived another 36 years. Lauge Koch became an international academic authority on the geology and geography of Greenland until he died at age 72 in 1964. They all lived rich, admired, and controversial lives with their writing, their maps, their loves, and above all their frail humanity.

Maps of North Greenland before (top) and after (bottom) the First and Second Thule Expeditions from Rasmussen (1923).

Maps of North Greenland before (top) and after (bottom) the First and Second Thule Expeditions from Rasmussen (1923).

Freuchen, P., 1953: Vagrant viking, my life and adventures, Julian Messner, Inc. New York, NY, 312 pp.

Hendrik, H, 1878: Memoirs of Hans Hendrik, the Arctic traveler serving under Kane, Hayes, Hall, and Nares 1853-1876, reprinted in Cambridge University Press, Cambridge, UK, 100 pp.

Koch, L., 1926: Report on the Danish Bicentenary Jubilee Expedition north of Greenland 1920-23, 232 pp.

Rasmussen, K., 1912: Report of the First Thule Expedition 1912.

Rasmussen, K., 1923: Greenland by the Polar Sea: The story of the Thule Expedition from Melville Bay to Cape Morris Jesup, Frederick A. Stokes Company, New York, NY, 328 pp.

Ghosts of Discovery Harbor: Digging for Data

Death by starvation, drowning, and execution was the fate of 19 members of the US Army’s Lady Franklin Bay Expedition that was charged in 1881 to explore the northern reaches of the American continent. Only six members returned alive, however, they carried papers of tidal observations that they had made at Discovery Harbor at almost 82 N latitude, less than 1000 miles from the North Pole. Air temperatures were a constant -40 (Fahrenheit or Celsius) in January and February. While I knew and wrote of this most deadly of all Arctic expeditions, only 2 days ago did I discover a brief 1887 report in Science that a year-long record of hourly tidal observations exist. How to find these long forgotten data?

My first step was to search for the author of the Science paper entitled “Tidal observations of the Greely Expedition.” Mr. Alex S. Christie was the Chief of the Tidal Division of the US Coast and Geodedic Survey. He received a copy of the data from Lt. Greely. His activity report dated June 30, 1887 confirms receipt and processing of the data, but he laments about “deficient computer power” and requests “two computers of standard ability preferable by young men of 16 to 20 years.” Times and language have changed: In 1887 a computers was a man hired to crunch numbers with pen and paper.

Data table of 15 days of hourly tidal sea level observations extracted from Greely (1888).

Data table of 15 days of hourly tidal sea level observations extracted from Greely (1888).

While somewhat interesting, I still had to find the real data shown above, but further google searches of the original data got me to the Explorer’s Club in New York City where in 2003 a professional archivist, Clare Flemming, arranged and described the “Collection of the Lady Franklin Bay Expedition 1881-1884.” This most instructive 46 page document lists the entire collection of materials including Series III “Official Research” that consists of 69 folders in 4 Boxes. Box-4 File-15 lists “Manuscript spreadsheet on Tides, paginated. Published in Greely (1888), 2:651-662” as well as 3 unpublished files on tides and tide gauges. With this reference, I did find the official 1888 “Report on the United States Expedition to Lady Franklin Bay” of the Government Printing Office as digitized from microfiche as

https://archive.org/details/cihm_29328

which on page 641 shows the above table. There are 19 more tables like it, but at the moment I have digitized only the first one. Unlike my colleagues at the US Coast and Geodedic Survey in 1887, I do have enough computer power to graph and process these 15 days of data in mere seconds, e.g.,

Hourly tidal observations at Discovery Harbor taken for 15 days by Greely in 1881 and Peary in 1909.

Hourly tidal observations at Discovery Harbor taken for 15 days by Greely in 1881 and Peary in 1909.

A more technical “harmonic” analyses reveals that Greely’s 1881 (or Peary’s 1909) measured tides at Discovery Harbor have amplitudes of about 0.52 m (0.59) for the dominant semi-diurnal and 0.07 m (0.12) for the dominant diurnal oscillation. My own estimates from a 9 year 2003 to 2012 record gives 0.59 and 0.07 m for semi-diurnal and diurnal components. This gives me confidence, that both the 1881 and 1909 data are good, just have a quick look at 1 of the 9 years of data I collected:

Tidal sea level data from a pressure sensor placed in Discovery Harbor in 2003. Each row is 2 month of data starting at the top (August 2003) and ending at the bottom (July 2004).

Tidal sea level data from a pressure sensor placed in Discovery Harbor in 2003. Each row is 2 month of data starting at the top (August 2003) and ending at the bottom (July 2004).

There is more to this story. For example, what happened to the complete and original data recordings? Recall that Greely left Discovery Harbor late in the fall of 1883 after supply ships failed to reach his northerly location two years in a row. This fateful southward retreat from a well supplied base at Fort Conger and Discovery Harbor killed 19 men. Unlike ghostly Cape Sabine where most of the men perished, Discovery Harbor had both local coal reserves and musk ox in the nearby hills that could have provided heat, energy, and food for many years.

It amazes me, that a 1-year copy of tidal data survived the death march of Greely’s party. It took another 18 years for the complete and original records to be recovered by Robert Peary who handed them to the Peary Arctic Club which in 1905 morphed into Explorer’s Club of New York City. I suspect (but do not know), that these archives contain another 2 years of data that nobody but Edward Israel in 1882/83 and the archivist in 2003 laid eyes on. Sergeant Edward Israel was the astronomer who collected the original tidal data. He perished at Cape Sabine on May 29, 1884, 25 years of age.

Edmund Israel, astronomer of the Lady Franklin Bay Expedition of 1881-1884.

Edmund Israel, astronomer of the Lady Franklin Bay Expedition of 1881-1884.

References:

Christie, A.S., 1887: Tidal Observations of the Greely Expedition, Science, 9 (214), 246-249.

Greely, A.W., 1888: Report on the Proceedings of the United States Expedition to Lady Franklin Bay, Grinnell Land, Government Printing Office, Washington, DC.

Guttridge, L., 2000: The ghosts of Cape Sabine, Penguin-Putnam, New York, NY, 354pp.