Category Archives: Oceanography

Exploring Greenland’s Coastal Currents: A Journey of Discovery with Icebreaker Polarstern

Icebreaker Polarstern reached its home port of Bremerhaven in Germany just before Orkan “Joshua” hit northern Germany hard. The ship returned after 3 month at sea with 48 crew and 46 scientists working on ocean biology, chemistry, and physics. The 7-week expedition from Svalbard to Greenland and back to Germany culminated 3 years of planing and preparations led by the Alfred Wegener Institute (AWI). As one of 46 scientists I stepped onto the ship almost two months ago in Longyearbyen. We planned to explore what moves ice and fresh Arctic water into the Atlantic Ocean with sensors to probe the coastal circulation.  Analyzing these data, I will now live in Bremerhaven for a few months.

The map above shows where we went to the north of Greenland. I am coloring the coastal ocean shallower than 1000 m in light blue and the deeper ocean in dark blue. Our 2025 Polarstern data are the red symbols while yellow and blue symbols show data locations from 1964 ice island, 2007 icebreaker,  and 2013 helicopter surveys. This area contains the last and thickest sea ice of the Arctic Ocean and prior ocean observations originate from floating ice islands that both the Soviet Union and the U.S.A. used during the Cold War 1947-91 such as the Arlis-1964 track (yellow line). Helicopter surveys collected a few data in 2013 (blue symbols) while the Swedish icebreaker Oden collected data along two lines farther offshore (yellow symbols).

Now how does Greenland look from the ship? Well, there is always ice and it is always cold. The coldest days we had near the coast when the skies were clear. The coldest day we had -20 C, that is -4 F for my American friends, but most of the time we had clouds and storms with temperatures warmer at -12 C (10 F) with clouds and little visibility. It snowed alot and shoveling the ship’s deck was an almost daily chore. A relaxing “cruise” it was not. We worked sensors systems in the windy cold outside during all hours of the day and night. Pictures like the above were almost always taken during my 8 hours “off” that for me was from 08:00 to 16:00, because my shift was from 16:00 to 24:00. After a phone call to my wife after midnight and a peppermint tea to warm up, I slept from 01:00 to breakfast at 07:30. As almost all scientists aboard I shared my cabin with others, so there is not too much privacy. The photos below show my bunk bed (I slept atop), shared work spaces, and the rarely empty dining room. We often ate in shifts, too, because not all 50 people would fit the dining room in one sitting. So we often had 2 sittings. A comfortable living room was next door for desert, tea, coffee, games, and conversations.

Now what about science, you may ask. Here we made a major discovery, I felt. A mathematician used her craft to predict a coastal current to the north of Greenland that, I admit, made no sense to me as it contradicted 30+ years of training and intuition in which direction such currents would flow, that is, the coast should be on the right hand side looking in the direction of the flow. The curious thing was that to the north of Greenland it should go in the opposite direction, that is, with the coast on the left. In Claudia’s numerical computer model run for months on super computers, this current-in-the-wrong-direction was a both prominent and persistent feature. I always discarded it as an unrealistic feature of some computer code run amok. And yet, when we actually reach the coast of northern Greenland and I measure ocean currents from a ship sensor that runs 24/7 to tell me current speed and direction, here this weired or “wrong” current was. It screamed at me from the screen the moment I plotted the data and shared it with Claudia who was aboard with the comment: “Your model is right and my intuition was wrong. Your current is at the same location, the same speed, and in the same direction as your model said it would.” Furthermore, a distinct and separate way to estimate ocean currents from ocean temperature and salinity observations showed the exact same thing. That’s now two good complementary confirmation of the current that nobody has ever seen or measured … until now that we aboard Polarstern did so on Sept.-23, 2025:

The map on the left shows our study area to the north of North Greenland. On it in red are sticks whose length indicate the speed or strength of the ocean current (at 56 meters below the surface) while its orientation gives the direction of the current. The light blue is shallow and dark blue is deep water as before. The current is sluggish offshore with a weak component to the south. In contrast, closest to the coast of North Greenland we find long sticks that point to towards the left (west by north-west). This is Claudia’s Coastal Current.

The two plots on the left provide more detail, as it shows how the current varies with depth and distance from the coast along a line from the coast towards offshore. The bottom of the shallow ocean is the black line from 100-m to 350-m meter at a distance of 20-40 km from the coast. The top-left panel shows the current (in colors) across the section where blue colors indicate currents flow into the page while red colors indicate currents that flow out of the page towards us viewing it with the coast on the left. The bottom-left panel shows the velocity component along the section with a flow that is mostly onshore near the surface.

There is so much more to this story as well as additional stories, notice the red dots in the top-left panel between 150-m and 300-m depth that indicate a strong flow to the south and east, but I save this for later. I also do not wish to tell you about the two ocean sensors we quickly deployed at this location to stay there until we, perhaps, recover them with new data next year or the year there after. I do wish to close this essay, however, with the view of Greenland that we had where we discovered Claudia’s coastal current. Science is fun, exciting, and always surprises.

Greenland Ocean Expeditions, Science, and Fun

Science and Greenland both combine discovery, adventure, and diverse people. I do this work free of academic constraints, responsibilities, and pay, because I retired from my university three months ago drawing on savings that accumulated since 1992 with my first job in San Diego, California. It was there and then, that my interest in polar physics started, but my first glimpse of Greenland had to wait until 1997 when a Canadian icebreaker got me to the edge of the ice in northern Baffin Bay between Canada and Greenland. It was a cold and foggy summer day as these pre-digital photos show:

Almost 25 years later I visited the area again with Her Danish Majesty Ship HDMS Lauge Koch, a Danish Navy vessel, which surveyed the coastal waters between Disko Bay in the south and Thule Air Base (now Pituffik Space Base) in the north. Two Danish goverment agencies led this expedition: the Geological Survey of Denmark and Greenland (Dr. Sofia Ribeirio, GEUS) and the Danish Metorological Institute (Dr. Steffen Olsen, DMI). Our small team of 11 scientists and 12 soldiers surveyed the seafloor with fancy acoustics, drilled into the bottom with piston corers, fished for plankton with towed nets, and collected water properties with both electronics and bottle samples. As this was during the Covid-19 pandemic, all scientists had to be both vaccinated and tested prior to boarding the flight from Copenhagen to Greenland. We also quarantined for 3 days in Aasiaat, Greenland prior to boarding the ship.

Now in retirement, I thoroughly enjoy the time to just just revisit the places and people via photos that finally get organized. More importantly, I finally feel free to explore the data fully that we collected both on 14 separate expeditions to Greenland between 1997 and 2021. For example, only in retirement did I discover that Baffin Bay was visited in 2021 by both a Canadian and an American in addition to our Danish ship. Data from these separate Baffin Bay experiments are all online and can be downloaded by anyone. I did so and processed them for my own purposes. Furthermore, NASA scientists of the Ocean Melts Greenland program flew airplanes all over Greenland to drop ocean sensors to profile and map the coastal ocean with fjords and glaciers hard to reach by ships. All these are highly complementary data that describe how icy glaciers, deep fjords, coastal oceans, and deep basins connect with each other and the forces that winds, sea ice, and abundant icebergs impose on them.

It requires a bit of skill and computer code, however, to process data from different ships, countries, and sensors into a common format to place onto a common map for different years, but here is one such attempt to organize:

There is one map for each of 9 years, i.e., station locations are shown in a top (2014, 2015, 2016), center (2017, 2018, 2019), and bottom row (2020, 2021, 1968). Land is gray with Canada on the left (west) and Greenland on the right (east) while the solid contour lines represent the 500-m and 1000-m water depth. Each colored symbol represents one station where the ship stopped to deploy a sensor package to measure temperature, depth, and salinity of the ocean water from the surface to the bottom of the ocean adjacent to the ship. The different colors represent data from Canada in red, Denmark in green, and USA in blue. The light blue color represents historical data from a study that investigated the waters after a nuclear armed B-52 bomber crashed into the ocean near Thule/Pituffik on 17 Jan. 1968 with one nuclear war head still missing. A Wikipedia story called 1968 Thule Air Base B-52 Crash provides details, references, and Cold War context, but lets return to the data and ocean physics:

Notice a single red dot near the bottom center of some maps such as 2015, 2017, or 2021. For this single dot I show the actual temperature and salinity data and how it varies with depth (labeled pressure, at 100-m depth the pressure is about 100 dbar) and from year to year:

The two bottom panels show how temperature (left) and salinity (right) change with depth (or pressure). Notice that the coldest water near freezing temperature of -1.8 degrees Celsius (29 Fahrenheit) occurs between 30-m and 200-m depth (30 to 200 dbar in pressure). Below this depth the ocean water actually becomes warmer to a depth of about 500-600 m to then become cooler again. The effects of pressure on temperature are removed, this is why I call this potential temperature and label it “Pot. Temp.” The warmest waters at 600-m depth are also the most salty (about 34.5 grams of salt per 1000 grams of water). This saltiness makes this water heavier and denser than the colder waters above. This is a common feature that one finds almost anywhere in polar regions. The top panel shows the same data without reference to depth (or pressure), but contours of density show how this property changes with temperature and salinity. It takes a little mental gymnastic to “see” how density always increases as pressure increases, but the main thing here is that both salinity and temperature can change the density of seawater.

Sketch of ocean current systems off Greenland and eastern Canada. Colors represent topography of ocean, land, and Greenland ice sheet.

U.S. Coast Guard, International Ice Patrol

The origin of the warmer (and saltier) waters is the Atlantic Ocean to the south. Currents move heat along the coast of Greenland to the north. Icebergs in Baffin Bay extend into this Atlantic Layer and thus move first north along the coast of Greenland before turning west in the north and then south along the coast of Canada. This deep ocean heat does reach coastal tidewater glaciers which are melted by this warm ocean water. So the year-to-year changes of temperature and salinity determine in part how much the coastal glaciers of Greenland melt. The temperature and salinity maxima change from year to year being warmest in 2015 and 2017 and coldest in 2019 and 2021. No “global warming” here, but notice what happens closer to the bottom at 1500-m, say. These waters are separated from the Atlantic and Arctic Oceans to the south and north by water depths that do not exceed 600-m in the south and 400-m in the north. These almost stagnant waters increase their temperatures steadily from 2003 to 2015 to 2017 to 2019 to 2021. This is the global warming signal.

My former student Melissa Zweng published a more thorough and formal study in 2006 using all then available data from Baffin Bay between 1916 and 2003. Her Figure-7 shows the results for those parts of Baffin Bay that are deeper than 2000-m for two different depth ranges. Notice that the year to year variations (up and down) is small, but a steady increase in temperature is apparent from perhaps -0.3 Celsius in 1940 to -0.05 in 2003 for the 1400-1600 m depth range. We also did a very formal error analysis on the straight line we fitted to the data and find that deep temperatures increase by +0.03 C/decade. We are 95% sure, that the error or uncertainty on this warming is +/- 0.015 C/decade. So there is a 1 in 20 chance, that our deep warming trend is below +0.005 C/decade and an equal 1 in 20 chance, that our warming trend exceed +0.045 C/decade. In 19 out of 20 cases the (unknown) true warming value is between 0.005 and 0.045 C/decade.

So, more than 20 years have passed since Melissa’s work. The data I here showed between 2003 and 2021 thus gives us a chance to test our statistical predictions that we made 20 years ago. So, deep temperatures should be between 0.01 and 0.09 degrees Celsius warmer than they were in 2003. I have not done this test yet, but science is fun even if the data are old.

After getting off the ship at Thule Air Base (now called Pituffik Space Base) in 2021, us scientists climbed Dundas Mountain to stretch our legs, take in the varied landscape, and view our ship and home for a week from a distance. Notice how small HDMS Lauge Koch at the pier appears. All photos below were taken by geophysicist Dr. Katrine Juul Andresen of Aarhus University, Denmark:

References:

Münchow, A., Falkner, K.K. and Melling, H.: Baffin Island and West Greenland Current Systems in northern Baffin Bay. Progr. Oceanogr., 132, 305-317, 2015.

Ribeiro, S., Olsen, S. M., Münchow, A., Andresen, K. J., Pearce, C., Harðardóttir, S., Zimmermann, H. H., & Stuart-Lee, A.: ICAROS 2021 Cruise Report. Ice-ocean interactions and marine ecosystem dynamics in Northwest Greenland. GEUS, Danmarks og Grønlands Geologiske Undersøgelse Rapport, 70, 2021.

Zweng, M.M. and Münchow, A.: Warming and Freshening of Baffin Bay, 1916-2003. J. GEOPHYS. RES., 111, C07016, doi:10.1029/2005JC003093, 2006.

Greenland Glacier-Driven Ocean Circulation

Greenland’s coastal glaciers melt, shrink, and add to globally rising sealevel. They also drive local ocean currents that move icebergs around unless they are stuck on the bottom. The glaciers’ melt is cold fresh water while the adjacent ocean is both salty and warm. Checking on what we may expect against observations, I here use data from NASA’s Ocean Melts Greenland initiative that dropped ocean probes from an airplane into the ice waters off coastal Greenland to measure ocean temperature and salinity.

For six years these data show how the coastal ocean off Greenland varies from location to location next to glaciers as well as from year to year. More specifically, I picked Melville Bay in North-West Greenland for both its many glaciers and many dropped NASA ocean sensors. The ocean data allow me to estimate ocean currents by using a 100 year old physics method. I just taught this to a small class of undergraduate science students at the University of Delaware. My students are strong in biology, but weak on ocean physics. This essay is for them.

Melville Bay is a coastal area off north-west Greenland between the town of Upernavik (Kalaallisut in Greenlandic) near 73 N latitude where 1100 people live and the village of Savissivik (Havighivik in Inuktun) at 76 N latitude where 60 Inuit live. There are no other towns or settlements between these two villages that are about as far apart as Boston is from Philadelphia, PA. Imagine there were no roads from Boston to New York to Philadelphia but only one large glacier next to another large glacier. This is Melville Bay.

Below I show an excellent set of photos of Savissivik by a French husband and wife team who visited in 2013/14. Their photographic gallery captures elements of contemporary subsistence living in remote Greenland where animals like seals, birds, fish, narwhal, and polar bears provide food, fuel, clothing, and income.

NASA dropped some 50 ocean sensors into Melville Bay froma plane during the short summer seasons each year 2016 through 2021. I met NASA pilots, engineers, and scientists doing their experiments when I was doing mine from a snowmobile in April of 2017 and again with Danish friends from a Navy ship in August of 2021, but these are stories for another day.

Let me start with a map of where NASA dropped their ocean profiling floats into Melville Bay and thus introduce the data. While the surface waters are usually near the freezing point, waters 300-400 meters deep down are much warmer. They originate from the Atlantic Ocean to the south and one of the goals of NASA’s “Ocean Melts Greenland” campaigns was to determine if and how these Atlantic waters reach the coastal glaciers. Most glaciers of Melville extend into this warm ocean layer and thus are melted by the ocean.

In the map above I paint the maximal temperatures in red and the bottom depths in blue tones. The profile on the right shows data for all depths at one station. As salinity increases uniformly (red curve) the temperature increases to a maximum near 300-m depth (black curve). It is this maximal subsurface temperature that I extract for each station and then put on the contour and station map on the left. The straight blue line connects Upernavik in the south with Sassivik in the north. It is an arbitrary line, coast-to-coast cutting across Melville Bay.

The warmest warm waters we find near Upernavik in the south and within a broad submarine canyon that brings even warmer waters from Baffin Bay towards the coast. Temperatures here exceed 2.4 or even 2.7 degrees Celsius. Most coastal waters along Melville Bay have a temperature maximum of about 1.5 to 1.8 degrees Celcius (about 35 Fahrenheit) and this “warm Atlantic” ocean water melts the coastal glaciers. The ocean melts the glaciers summer and winter while the warm air melts it only in summer.

There is more, because the glaciers’ melt also discharge fresh water into the ocean where it mixes to to form a layer of less dense or buoyant water. The buoyant waters create a local sealevel that is a little higher along the coast than farther offshore. The map above indicates that this “little higher sealevel” comes to about 4 cm or 2 inches. If this pressure difference across the shore is balanced by the Coriolis force, as it often does, then an along-shore coastal current results. This coastal current would move all icebergs from south to north unless they get stuck on the bottom. Along the northern coastline of Melville Bay the surface flow is from east to west. The coastal current is strongest near Savissivik where we find a (geostrophic) surface current larger than 40 cm/s. At that speed an iceberg would move more than 21 miles per day. Such strong surface flows are exceptional and diminish rapidly with depth. Hence a freely floating iceberg with a draft of several hundred meters would move much slower than the surface current.

I met a hunter from Savissivik in April of 2017 and for a fast-moving night we discussed the state of local fishing, hunting, living, traveling, and working on the sea ice next to the glaciers of Melville Bay. He invited me to become his apprentice. As such I would now ask him about the surface currents outside his home. Which way does he observe the icebergs to move in summer or winter? Has hunting on the sea ice in winter changed over his life time? When is it safe to travel there with a dog-sled? Could he and I perhaps work together during the spring to deploy ocean sensors through the sea ice? I am dreaming again …

Ice, ocean, and glacier change in northern Greenland

Steffen Olsen is a Danish physical oceanographer with a skill to present beauty to an artist like my wife and a scientist like me. Three days ago he posted a photo on Twitter with these words

Local hunters from Qaanaaq navigating our CTD system in the frozen ice mélange in front of Tracy Galcier 66W 77N to measure the ocean below. Heat loss to melting of glacial ice leaves the ocean at sub-zero temperatures down to 400m @arctic_passion @dmidk @ruth_mottram

Photo: Dogsled from Qaanaaq near the northern edge of Tracy Gletscher in Inglefield Fjord April 2022. [Credit: Dr. Steffen Olsen, Danish Meteorological Institute.]

Steffen’s photo shows his study area, research platform, and mode of transportation. There is a glacier in the background between the rocks on the left (north) and unseen mountains to the right (south). Equally unseen is the ocean under all this crushed and broken and piled up sea ice covered by fresh snow. We see tracks of people walking to the vantage point from where the photo is taken. The dogs rest on a small patch of level sea ice perhaps 3-5 feet (1 to 1.5 meters) thick.

There are boxes on the sled that contain gear to drill through the sea ice and then to send a probe down towards the ocean bottom to measure ocean temperature, saltiness, and oxygen during its decent. I did similar work with a snowmobile in 2017 based at Thule Air Base for 6 weeks. Steffen and I work together on such data. He collected these every year since 2011 both adjacent to Tracy Gletscher and along most of the ~120 km long and ~1000 meter deep fjord. I am grateful to Steffen to share this photo: It helps me to focus on my passions rather than my outrage at soldiers and leaders of the Russian Federation in their war to destroy Ukraine and its people building a free, vibrant, and democratic country for themselves. There is more, but I stop here now.

Let me start with a map of where in Greenland the photo was taken and where Steffen collected his data each since 2011. The red star in the insert top-right shows the location of the map between Canada and Greenland. I color ocean bottom depths in blue shades and land heights in green, yellow, and brown shades. The glacier in Steffen’s photo is at the north-eastern end of Inglefield Fjord where I placed the label Tracy. The label Qaanaaq shows where about 650 Inughuit live along the coast near the center of the fjord. It probaby took the dogs about 2-3 days to travel with their cargo from Qaanaaq to Tracy Gletscher. Red dots are stations served by a Danish Navy ship in the summer of 2015, but I here only talk about the blue dots.

Figure: Map of the study area with ocean sampling stations in Inglefield Fjord (blue dots) and adjacent northern Baffin Bay. [Unpublished own work.]

The blue dots are stations where Steffen and his companions drilled through the sea ice in 2018. Note that some of those ocean stations appear on land. This cannot be, but the glacier has retreated between the time the topographic data was collected and 2018 when Steffen collected the ocean data. Three LandSat satellite images below show how the glacier changed from 1973 to July and August of 2021. Icebergs are visible, too. A citizen scientist with the handle “Espen” at the Arctic Sea Ice Forum extracted these satellite photos from public U.S. databases. He is part of an online international community of Greenland and sea ice enthusiasts who posts at this forum for over a decade making daily discovers. These are people with regular jobs that in their spare time post satellite imagery and open data they found which they share openly often with insightful interpretations. It is citizen science at its very best. I go there often to read, ask, and learn. I even met a prominent member once for lunch when visiting Copenhagen on my way to Greenland. He gifted me LandSat imagery of my favorite glaciers printed on cloth that I framed for its scientific and artistic beauty. Thank you, Espen 😉

Gallery: Space photography (LandSat) of glaciers terminating from the Greenland ice sheet in Inglefield Fjord in 1973 (right), July 2021 (center), and August 2021 showing the retreat of Tracy but not Heilprin Gletscher. [Credit: Espen Olsen at Arctic Sea Ice Forum.]

So how does the ocean below all this ice next to a glacier look? Well, lets look at a set of station from Qaanaaq to Tracy Gletscher that shows how temperature, salinity, and oxygen of the water changes both with depth and along the fjord. We always find very cold, somewhat fresher, and highly oxygenated water near the ocean surface about 40 m (near glacier) to 100 m (near Qaanaaq) below the sea ice and warmer, saltier, and less oxygenated water below with a temperature maximum of 1 degree Celsius near 300 m depth. It is this warm water that melts the adjacent glacier. As Dr. Olsen says “… Heat loss to melting of glacial ice leaves the ocean at sub-zero temperatures …” In other words, the deeper waters 1. enter the fjord at temperatures above zero degrees Centigrade, 2. reach the glacier, 3. cool down as they melt the glacier, and 4. leave the fjord at temperatures below zero degrees Centigrade. This is why the two stations near the glacier show slightly fresher and cooler waters between 300 and 500 m depth. This water contains the glacial melt. The section represents the 10 year average from 2011 through 2020.

Figure: Section of salinity (bottom), temperature (center), and dissolved oxygen (top) along Inglefield Fjord as an average of data collected annually between 2011 and 2020. [Unpublished own work.]

Earlier this year I tried to visit Copenhagen to finish this work that places this emerging story into both a historical and spatial context, but Covid restrictions derailed this and other plans. Nevertheless, have excellent data from 1928 when this fjord was first surveyed by Danish oceanographers. At that time the waters had dramatically different temperatures (much colder) and salinities (a little fresher) both inside the fjord and in Baffin Bay adjacent to it. The changes are probably related to a much changed sea ice cover and perhaps ocean circulation that relates how the winds impact the ocean with and without sea ice. For the 1979 to present satellite record, we can quantify how much sea ice covers both the fjord and adjacent ocean. I made the graph below last week from 14073 almost daily satellite images whose data the U.S. National Snow and Ice Data Center distributes freely. I show annual averages for each of the 42 years that these SSM/I satellites have been measuring sea areal coverage from space.

Figure: Annual averages of sea ice cover 1979 through 2021 with linear trend lines for two 21-year subsets (blue) and the entire 42-year record (red). [Unpublished own work.]

Before the year 2000 the sea ice cover fluctuated between 26,000 and 39,000 km2 and if one for how these changes are trending between 1979 and 2002, one finds a slight increase in the blue line, however, this increase is not significantly different from zero at a high 95% level of confidence. For the second period after 2002, the ice covered area fluctuates much less, from about 22,000 to 28,000 km2 and the trend line in blue now indicates decreasing sea ice cover. As before, however, this blue trend line is no different from zero at the same high level of confidence. We also notice that there is a red trend line that I derive from using all 42 years of data. This line is very different and statistically significant, but it does not quiet do justice to the almost step-like change that appears to happen around 2000 through 2005. What happened then? I do not know, yet, but this is the fun of doing science: There is always more to discover. The sea ice cover in northern Greenland does not always follow a straight line. This is not different from our climate or life. Expect the unexpected, adjust, and keep moving. Or in Dr. Olsen’s words:

“… you have a number of years where conditions don’t follow the more linear track of (predicted) scenarios,” explained Dr. Olsen. “A warming tendency can be reversed for some years, for example.” [From https://phys.org, Oct.-13, 2021]

Waves Across the Pacific

Claudia Schreier is a sophomore at the University of Delaware. She majors in Chemical Engineering with a minor in Marine Sciences. Ms. Schreier’s essay emerged from an assignment in an undergraduate “Introduction to Ocean Science” class taught by Drs. K. Billups and A. Muenchow in the fall of 2020. ~A. Muenchow, Editor

The 1967 documentary “Waves Across the Pacific” highlights some of the first uses of high-tech measuring tools and novel techniques to discover how waves move across the Pacific Ocean. Dr. Walter Munk and his research team studied how wave energy from storms off Antarctica is lost as waves move across the equator towards Alaska. This was the first time that anyone collected and reported data for wave processes on a global scale.

Dr. Munk in 1963 (UC San Diego Library)

The vessel that the team used for this expedition was fascinating; it is called FLIP, and it is a mobile floating instrument platform standing 355 feet tall, providing both the space and stability for the laboratory and its equipment. Waves originating from Antarctica reached New Zealand, and then moved farther in every direction within the Pacific Ocean. Recording stations were located in New Zealand, Samoa, Palmyra (an uninhabited equatorial atoll), Hawaii, and Alaska. In the North Pacific without suitable islands between Hawaii and Alaska, FLIP was used for wave measurements. Dr. Munk’s headquarters and central wave station for the experiment was in Honolulu, Hawaii.

The Floating Instrument Platform (Smithsonian Ocean)

Dr. Munk originally hypothesized that most of the wave energy coming from Antarctica would be scattered in the equatorial Trade Wind regions, therefore preventing most Antarctic waves from reaching the North Pacific. However, the data revealed little energy loss as the waves crossed the equator. The team discovered, though, that wave attenuation, or the loss of energy, results from interactions of waves from the same storm near its generation region off Antarctica only. Furthermore, the interactions between such waves weakened as they traveled away from the generation region through wave dispersion. This means that waves of different frequencies can travel at different speeds, therefore sorting them, because long waves move faster than shorter ones. Because of this data and new understanding, Dr. Munk could predict surfing conditions in Hawaii from prior observations off Samoa! The data and methodology from this experiment became the cornerstone of many subsequent studies to predict waves.

Recording stations from the study (Munk 2013)

The documentary film captured not only research methods but also life in the 1960s. I appreciated this look back in time, and it got me thinking about women in ocean sciences. In the film, all of the research scientists were men, and no women participated in the project whatsoever. The scientific community has come a long way since then, with more women participating and leading in both science and technology, as well as leading their fields, than ever before. The film helped me to realize that my interest in science and the opportunities to pursue a career within it has been aided by the efforts of countless women who have come before me.

This documentary also made me hopeful in a curious way that I did not expect from a marine science documentary. Dr. Munk was unsure about many things in this study, including the novel technology, remote measuring locations, and even the validity of the experiment itself. Amassing over 10 million data points, he found both the purpose and the results he was seeking for this research in the face of uncertainty. This documentary gave me a fresh take on ocean sciences, and it does more than just explain the brilliant research done in the 1960s: there are still many things we do not know about the world, but with the spirit and drive of Dr. Munk, there is no limit to what can be discovered.

A link to the film: https://waltermunkfoundation.org/uncategorized/waves-across-the-pacific/