I can’t get Pine Island Glacier, Antarctica out of my mind. Checking my e-mail over breakfast, I was alerted to the forum post of Dr. King, a geophysicist working at the University of Newcastle in northern England. His post provided a hint and link to data on where all glaciers around Antarctica are grounded. The file at the National Snow and Ice Data Center was too slow to download at home, so I quickly bicycled to work, got the data, wrote a little script , and plotted Pine Island Glacier’s grounding and “coastline”:

Pine Island Glacier, Antarctica as seen Jan.-12, 2012 from MODIS Terra. The blue colors top-left are ocean, red-yellow are ice. Thick black line shows where the glacier is grounded to the bedrock below sea level, that is, all "red" areas to the left (west) of this line are floating on the ocean. The thin black line is the "coastline." Grounding and coastlines are from National Snow and Ice Data Center'. North is to the top.
The image indicates a problem in a rapidly changing world: Both the “coastline” and the “grounding line” change with time, rapidly so. The black lines shown above come from hundreds of cloud-free satellite images from the 2004/05 summer in Antarctica. Dr. Scambos, Lead Scientist for the National Snow and Ice Data Center painstakingly analyzed these data and assembled them into the “Mosaic of Antarctica.” The derived coastline for the Pine Island region suggests, that the glacier advanced over 10 km in 7 years. The crack behind it identifies the next ice island that, I speculate, has already separates from the glacier, as its front is moving 10 times faster than the glacier itself. The grounding line looks different from one that I have seen before, too, e.g.,
Trying to resolve this issue, I google searched “Pine Island Grounding Line” only to find a number of excellent science essays and publications on the impacts that Pine Island Glacier and its streaming ice have on climate change and global sea level rise:
Good science essays hide in strange places: “West-Antarctic Ice: Slip-sliding Away” by Dr. Bruce E. Johansen of the University of Nebraska makes reference to a 2010 publication in the Proceedings of the Royal Society of Dr. Katz, University of Oxford. This theoretical fluid dynamicist modeled “Stability of ice-sheet grounding lines” . It is a very theoretical paper whose results are summarized in The New Scientist. This is where I am now, hoping on my bicycle to visit my BrewHaHa coffee shop to read the paper away from my desk over lunch.
Oh, I also stumbled into a NASA animation of how Pine Island and adjacent ice streams accelerate and become thinner very far inland as a result. The graphics are stunning, the data are free, and the message is scary, yet, the science is exciting and I feel very lucky to be able to study this. Watch it, get hooked on science, and have fun.