Tag Archives: weather

Sun Sets over Petermann Gletscher

Lights are out. Our ocean weather station on a floating glacier of northern Greenland confirms what the U.S. Naval Observatory reports for location 60 degrees and 30 minutes West longitude and 80 degrees and 40 minutes North latitude: As of today the sun is no longer above the horizon and will not rise until 23 February 2016. Total darkness means no solar power for the station that will have to survive on a fancy car battery temperatures as low as -50 degrees centigrade. Last week with the sun still up our station recorded -30.4 degrees celsius about 4 feet above the ice. How long will the station survive on that car battery?

Petermann Gletscher at dawn on 5 Oct. 2015 as captured by NASA Operation IceBridge. Our Ocean Weather Station is in the corner bottom left.

Petermann Gletscher at dawn on 5 Oct. 2015 as captured by NASA Operation IceBridge. Our Ocean Weather Station is in the corner bottom left.

Without power the station does not function, because each sensor, each computer, and each telephone call via the Iridium satellite system requires electricity. Without power I am in the dark about what the station does or what ocean or air temperatures are. Since I do have power at the moment, well, I got new data. For example, there is a voltage that the station sends me …

Voltage at Ocean Weather Station on Petermann Gletscher.

Voltage at Ocean Weather Station on Petermann Gletscher.

… whenever the sun is up, the solar panels recharge the battery and the voltage goes up. As I use electricity, the voltage goes down. Lets ignore a small temperature effect and details on how much electricity we draw at what “amperage.” Instead, lets focus on the regular up and down of voltage for the last 60 days and how it suddenly went flat. The flat line at 12.5 Volts tells me that the sun is down. The station now uses the car battery, but how long will this last? Quick answer is … a day, if I am dumb. Or 150 days, if I am smart. Time will tell, if I made a mistake in either my power budget or my computer code that gives and takes power to a range of sensors. Scary stuff, and my little sister Christina Parsons can attest, how nervous I was, when I uploaded new power-saving software that I wrote from my attic at home to the station in Greenland. The station did take the new software, restarted itself, and works making one data call each day instead of three. Data are still collected every hour, but I save 20% of total power.

Power is something in Watts (40 W Light bulb anyone?) and you have to multiply voltage by current draw (0.5 Amps anyone?) to estimate the power needs of the device drawing 0.5 Amp current at 12 Volts. Incidentally, 0.5 Amps is what the Iridium satellite phone draws when it calls me with new data. Let me check my power budget, if this is true … nope, it only takes 0.365 Amps, so it takes 12 volts times 0.365 Amps equal 4.4 Watts which is about 1/10 of that 40 W light bulb you are looking at, perhaps, or the station we put up: the yellow box is the car battery powering all the gadgets you see and many more you do not:

What I just showed you is the beginning of a power budget that I had to make to get my station through the night, now that there is no more sun for the next 4-5 months. My car batteries are rated to give 110 Watts for an hour, so if I run my 4.4 W satellite phone all the time, I would be out of battery juice after 110 Watt-Hours divided by 4.4 Watts equals 25 hours. That’s bad, real bad, especially since one should not run a car battery to zero and the battery at -30 degrees Celsius may only give me half the power than it would at the more usual 15 degrees Celsius we got outside. The solution to this problem is to use the phone only for a few minutes each day, say 5 minutes. So, since I am using the phone only 5 minutes out of the 1440 minutes that each day has, it takes about 1440 minutes divided by 5 minutes times 25 hours equals 300 days for the phone running 5 minutes each day to run down the battery. Magic this math is not, but it shows how important it is to use resources (electricity) wisely. There are times and places where it is not possible to plug your iPhone into a power outlet. You get the picture … well, here are some that University of Delaware PhD student Peter Washam took who was part of the ice drilling team during last summer’s deployment of the ocean weather station:

So, as of this morning at 4 am Delaware time, the station now in total darkness tells me that the ocean temperatures 700 meters below the 100 meter thick glacier are +0.3 degrees Celsius while air temperatures 2 meters above the ice are -11.1 degrees Celsius. Now what that means to the melting of the glacier by the ocean, I will have to tell you at another time in more detail. These data are the ONLY data from below any glacier to the north of the equator. We are really breaking new ground and are making new discoveries as we go along … as long as there is power. Hopefully there is no dumb mistake in my power budget.

Sun over the horizon of Greenland as seen during NASA's Operation IceBridge Flight in October 2015.

Sun over the horizon of Greenland as seen during NASA’s Operation IceBridge Flight in October 2015.

New ocean data from floating Petermann Glacier

#UDel Ocean-Weather station #Greenland on #petermann2015 calls home from 800 m under floating glacier with 2 weeks of new hourly data.

University of Delaware Ocean-Weather station on Petermann Glacier with the hot-water drilling team UDel and British Antarctic Survey after deployment Aug.-20, 2015 [Credit: Peter Washam, UDel]

University of Delaware Ocean-Weather station on Petermann Glacier with the hot-water drilling team UDel and British Antarctic Survey after deployment Aug.-20, 2015. Cables from ocean sensors emerge from the ice where the wooden cross is located on the right. [Credit: Peter Washam, UDel]

Map of Greenland's Petermann Gletscher, Fjord, and adjacent Nares Strait. The UDel Ocean-Weather station is the green dot on the floating ice shelf that does not have a red triangle. Blue dots in the ocean are where we collected ocean data from I/B Oden in August 2015. Green dots are ocean moorings which report via Iridium while red triangles are "fancy" GPS locations we instrumented for 12 days to measure vertical tidal elevations of the glacier.

Map of Greenland’s Petermann Gletscher, Fjord, and adjacent Nares Strait. The UDel Ocean-Weather station is the green dot on the floating ice shelf that does not have a red triangle. Blue dots in the ocean are where we collected ocean data from I/B Oden in August 2015. Green dots are ocean moorings which report via Iridium while red triangles are “fancy” GPS locations we instrumented for 12 days to measure vertical tidal elevations of the glacier.

My nerves are shot and I get depressed when the Ocean-Weather station does not call home when she should. We deployed the station last months on the floating section of Petermann Gletscher where she has moved steadily towards the ocean at about three meters per day. We measure this with GPS which is the black dot next to the temperature sensor above the head of the team that drilled the hole. It connected 5 ocean temperature, salinity, and pressure sensors to 800 meter depth below sea level. The data come from this great depth to the surface where it feeds into the weather station that then transmits data via an Iridium antenna to another Iridium antenna that sits atop my house. Let me run out and take a quick photo of it …

Iridium antenna atop my house in Newark, Delaware that receives data calls from Greenland.

Iridium antenna atop my house in Newark, Delaware that receives data calls from Greenland.

My problem with Iridium over the last 6 weeks has been that its (data) connectivity is spotty. For example, I received no data the last 2 weeks. This has been the longest time with no call and no new data. Designing the system, I decided against the more robust “Short-Burst-Data” SBD text messages. Instead I opted for a truly 2-way serial connection which, if a connection is established, allows more control as well as a more complete and gap-free data stream. The drawback of this serial connection via Iridium is lack of connectivity. Sometimes days or weeks go by without a successful connection even though computer codes are written to connect every 8 hours. I can change that by uploading new codes to the two Campbell CT1000 data loggers that control all sensors as well as data collection and communication via Iridium.

Today’s call was the first in two weeks, but it provided a complete data download without ANY gaps in the hourly time series of weather in the atmosphere (wind, temperature, humidity) and weather in the ocean (temperature, salinity, pressure). The ocean data show that about every 2 weeks with the spring-neap cycles, we see very large excursions of colder and fresher water appear at 2 sensors within about 30 meters of the glacier ice. It is too early to speculate on how this may relate to ocean circulation and glacier melting, but the large and frequent up and down do suggest a lot of ocean weather.

I am anxiously awaiting the next data call in about 5 hours to get the 8 hours of data. Wish me luck and a healthy Iridium satellite system where calls are about $0.90/minute. Today’s call took 5 minutes. This is what some of the (uncalibrated) data look like:

Ocean-Weather station data from Aug.-20 through Sept.-25 (today). Ocean temperatures at 5 vertical levels are shown as 5 red curves  in 5th panel from top. The black lines in that panel are air temperatures that reached -20 C this week.

Ocean-Weather station data from Aug.-20 through Sept.-25 (today). Ocean temperatures at 5 vertical levels are shown as 5 red curves in 5th panel from top. The black lines in that panel are air temperatures that reached -20 C this week.

Oceanography of Nares Strait Ice Flushing

I need the ice out of Nares Strait, a 20 mile wide and 300 miles long pathway to the North Pole between northern Canada and Greenland. The ice blocks our way to Petermann Fjord where a large glacier pushes thick ice out so sea as a floating ice shelf. We plan to drill through the floating section of the glacier that is about as thick as the Empire State Building is high. The ship to get us there is the Swedish icebreaker Oden (Location Map). She is passing the Faroe Islands to the north-west of Scotland and will arrive in 2 weeks at Thule Air Force Base where we will meet her.

Image of northern Greenland (top right) and Ellesmere Island (center) showing open water as black, land as gray, and sea ice as gray/white. The two red dots are Thule Air Force Base in the south and Petermann Glacier in the north. Note the bands of black water along the coast of Ellesmere Island that result from east to west blowing winds that move ice offshore.

Image of northern Greenland (top right) and Ellesmere Island (center) showing open water as black, land as gray, and sea ice as gray/white. The two red dots are Thule Air Force Base in the south and Petermann Glacier in the north. Note the bands of black water along the coast of Ellesmere Island that result from east to west blowing winds that move ice offshore and reduce the southward flow in Nares Strait.

The voyage from Thule to Petermann usually takes about 2-3 days, but if the sea ice does not flush out with the generally southward currents, then it may take a week or two wrecking havoc to our busy science schedule. So, why is the ice still lingering in Nares Strait this year?

Nares Strait ice cover in July of 2015 (left), 2014 (center), and 2013 (right) from MODIS Terra.

Nares Strait ice cover in July of 2015 (left), 2014 (center), and 2013 (right) from MODIS Terra.

There are three parts to the answer: First, a sturdy ice arch at the southern entrance of Nares Strait has to break. It has done so only last week. Second, a strong and perhaps oscillating flow has to thoroughly collapse the large pieces of ice at a narrow choke point that is Smith Sound. This has not happened yet. And third, a persistent flow to the south has to flush out ice into Baffin Bay to the south faster than it enters from the Arctic Ocean in the north. This flow is much weaker at the moment than is normal, because winds in the Arctic Ocean have been from east to west right now. These winds moved water (and ice) offshore to the north, so sealevel along northern Greenland and Canada drops. We can see this in today’s satellite imagery as prominent black bands of open water along the coast of northern Canada.

Lets take a closer look of this same image and zoom in on the southern part of Nares Strait as it looked this morning.

Collapsing ice arch at the southern entrance to Nares Strait on 13 July 2015 from MODIS AQUA.

Collapsing ice arch at the southern entrance to Nares Strait on 13 July 2015 from MODIS AQUA.

What used to be a solid frozen mass of ice along the Greenland coast (bottom right) has become a broken and loose mass of smaller ice floes. The larger blocks farther from the coast are now sliding southward as the loose ice along the coast reduces friction or lubricates the edges. The sides lose their grip on the ice and the entire construction fails and collapses. A most beautiful video on the stability of arches is posted by Open University here about lines of action or thrust.

All we now need for the ice to flush out of Nares Strait is a weakening or reversal of the winds at the other northern entrances to Nares Strait. Much of the generally southward flow is caused by the ocean’s surface being higher in the north than it is in the south. There are details that I am skipping, but basically much of the flow rolls downhill like a ball. And with the winds up north being from east to west, there is not much of a hill that the water can flow down, so we got somewhat stagnant waters. I have actually measured the height of this “hill of water” many times over the many years with ocean sensors that measure how much water is above them. This figure summarizes 3 years of data collected every 3 hours or so

Graph showing how water flow (called “volume flux”) varies with the steepness of the hill (called “pressure gradient”). The “hill” is at most 10 centimeters or 3 inches) high. [Adapted from Muenchow, 2015]

Now there is more to the “hill” story that is modified near the surface by the earth’s rotation in a fluid that has different densities at different depths. In a nutshell, the surface flow is 2-3 times as strong as the depth averaged flow. Furthermore, the surface flow on the Canadian side of Nares Strait is often twice as strong as that closer to Greenland, but all these spatial variations in flow actually help to smash large pieces of ice by moving and rotating them different sides of the same large piece of ice differently.

So, lets all hope that we get a few days of strong winds from the north flowing south, that should clear Nares Strait quickly before Oden arrives there in 2 weeks time. Those winds from the north not only flush out ice from Nares Strait, they also keep it nicely on one, the Canadian side. Earth rotation does wonderful and magical things to fluids such as water and air.

Muenchow, A, 2015: Volume and freshwater flux observations from Nares Strait to the west of Greenland at daily time scales from 2003 to 2009. J. Phys. Oceanogr., re-submitted July 2015, .pdf

Heartbeat of Ocean and Air of Greenland

While cables are designed at a small company in southern California,while instruments are shipped to friends at the British Antarctic Survey in England, while instrument locations are contemplated by a small group of scientists, technicians, and graduate students, I am also on a journey back in time to check up on the heart beat of the air we breath and the oceans we sail. The Arctic heartbeat to me is the annual change from the total darkness of polar night to total sunlight of polar day. This cycle, this heartbeat takes a year. There is 24 hours of day in summer the same way that there is 24 hours of night now. Let me first show, however, where we are heading before I look at the heartbeat.

I love making maps and this is a rich and pretty one that shows North America from the top where Petermann Fjord and Glacier are (tiny blue box on left map). The colors are water depths and land elevations. The thick dotted red line is where a very large iceberg from Petermann traveled within a year to reach Newfoundland. Teresa, one of the contributors to my crowd-funding project, sailed up there to Newfoundland to see this iceberg. And she made a movie out this voyage. So, what happens up there in northern Greenland only takes a year, maybe two, to reach our more balmy shores. What happens in Greenland does NOT stay in Greenland. Vegas, Nevada this is not.

Figure1

Now on to the map on the right. This is the tiny blue box made much larger. It looks like a photo, and in a way it is, but a photo taken by a satellite, well, only one “channel” of this specific satellite, the many shades of gray are mine, it is NOT the real color. The glacier is in the bottom right as the white tongue sticking out towards 81 N latitude. Red lines there are water depths of 500 and 1000m. The blue dot in the top-left is where I had to leave an ocean sensor in a shallow bay for 9 years, because we could not get there to retrieve it for 6 years. Lucky for me (well, some smart design helped), the instrument was still there, collecting and recording data that we knew nothing about for 9 long years. It took smart and hardy fishermen from Newfoundland aboard the CCGS Henry Larsen to dangle my sensor out of the icy waters. And here is the heart beat it revealed:

AlertDiscTemp

Top graph is ocean temperature, bottom panel is air temperature nearby. And as you go from left to right, we move forward in time starting in 2002 until the end of 2012 when the last ocean measurements were made. The red lines are a linear trend that represents local (as opposed to global) warming. Both go up which means it gets warmer, but careful, the bottom one for air is no different from a straight line with zero slope meaning no warming. It does go up, you say correctly, but if I do formal statistics, this slope is no different from zero just due to chance. The top curve for the ocean, however, is very different. It does not look different, but the same statistics tell me that the warming is NOT due to chance alone. Oh, in case you wondered, the two dashed lines in the top panel are the temperatures at which seawater freezes and forms ice for the salinity range we see and expect at this embayment. As you add salt to water, it freezes at a lower temperature. This is why we put salt on our roads in winter, it makes the water freeze less fast.

I am a doctor, so here is my conclusion: Ocean heart beat is a little irregular and the trend is not good news for the ice. Air heart beat looks normal, the trends may need watching, but I am not too worried about that just yet. Watch the oceans … that’s where the heat and the action is these days.

Changing Weather, Climate, and Drifting Arctic Ocean Sensors

Three people died in Buffalo, New York yesterday shoveling snow that arrived from the Arctic north. The snow was caused by a southward swing of air from the polar vortex that is all wobbly with large meanders extending far south over eastern North-America where I live. Physics deep below the thinly ice-covered Arctic Ocean hold a key on why we experience the Arctic cold from 2000 km north and not the Atlantic warmth from 100 km east.

A wobbly jet stream that separates cold Arctic air from warmer mid-latitude air. Note the strong gradients over eastern North America. [From wxmaps.org]

A wobbly jet stream on Nov.-19, 2014 that separates cold Arctic air from warmer mid-latitude air. Note the strong differences over eastern North America and how balmy Europe, Russia, and Alaska are. [From wxmaps.org]

The Arctic Ocean holds so much heat that it can melt all the ice within days. The heat arrives from the Atlantic Ocean that moves warm water along northern Norway and western Spitsbergen where the ocean is ice-free despite freezing air temperatures even during the months of total darkness during the polar night. As this heat moves counter-clockwise around the Arctic Ocean to the north of Siberia and Alaska, it subducts, that is, it is covered by cold water that floats above the warm Atlantic water.

North-Atlantic Drift Current turning into the Norwegian Current that brigs warm Atlantic waters into the Arctic Ocean to the north of Norway and Spitsbergen. [Credits: Ruther Curry of WHOI and Cecilie Mauritzen of Norwegian] Meteorological Institute]

North-Atlantic Drift Current turning into the Norwegian Current that brigs warm Atlantic waters into the Arctic Ocean to the north of Norway and Spitsbergen. [Credits: Ruther Curry of WHOI and Cecilie Mauritzen of Norwegian] Meteorological Institute]

But wait a minute, how can this be? We all learn in school that warm air rises because it is less dense. We all know that oil floats on water, because it is less dense. Well, the warm Atlantic water is also salty, very salty, while the colder waters that cover it up are fresher, because many larger Siberian rivers enter the Arctic Ocean, ice melted the previous summer, and fresher Pacific waters enter also via Bering Strait. So, the saltier and more dense Atlantic water sinks below the surface and a colder fresher layer of water above it acts as a insolation blanket that limits the amount of ocean heat in contact with the ice above. Without this blanket, there would be no ice in the Arctic Ocean and the climate everywhere on earth would change because the ocean circulation would change also in an ice-free Arctic Ocean, but this is unlikely to happen anytime soon.

A single profile of temperature and salinity from an ice-tethered profile (ITP-74) off Siberia in July 2014. Note the warm Atlantic water below 150 meter depth.

A single profile of temperature and salinity from an ice-tethered profile (ITP-74) off Siberia in July 2014. Note the warm Atlantic water below 150 meter depth.

Some wonderful and new science and engineering gives us a new instant perspective on how temperature and salinity change over the top 700 meters of the Arctic Ocean every 6 hours. Scientists and engineers at the Woods Hole Oceanographic Institution with much support from American tax-payers keep up many buoys that float with the ice, measure the oceans below, and send data back via satellites overhead to be posted for all to see on the internet. Over the last 10 years these buoys provide in stunning detail how the Arctic Ocean has changed at some locations and has been the same at other locations. I used these data in an experimental class for both undergraduate and graduate students to supplement often dry lecture material with more lively and noisy workshops where both I and the students learn in new ways as the data are new … every day.

For well over 50 years the Soviet Union maintained stations on drifting Arctic sea ice that stopped when its empire fell apart in 1991. Russia restarted this program in 2003, but unlike the US-funded automated buoys, the Russian-funded manned stations do not share their data openly. No climate change here …