Category Archives: Oceanography

Changing Weather, Climate, and Drifting Arctic Ocean Sensors

Three people died in Buffalo, New York yesterday shoveling snow that arrived from the Arctic north. The snow was caused by a southward swing of air from the polar vortex that is all wobbly with large meanders extending far south over eastern North-America where I live. Physics deep below the thinly ice-covered Arctic Ocean hold a key on why we experience the Arctic cold from 2000 km north and not the Atlantic warmth from 100 km east.

A wobbly jet stream that separates cold Arctic air from warmer mid-latitude air. Note the strong gradients over eastern North America. [From wxmaps.org]

A wobbly jet stream on Nov.-19, 2014 that separates cold Arctic air from warmer mid-latitude air. Note the strong differences over eastern North America and how balmy Europe, Russia, and Alaska are. [From wxmaps.org]

The Arctic Ocean holds so much heat that it can melt all the ice within days. The heat arrives from the Atlantic Ocean that moves warm water along northern Norway and western Spitsbergen where the ocean is ice-free despite freezing air temperatures even during the months of total darkness during the polar night. As this heat moves counter-clockwise around the Arctic Ocean to the north of Siberia and Alaska, it subducts, that is, it is covered by cold water that floats above the warm Atlantic water.

North-Atlantic Drift Current turning into the Norwegian Current that brigs warm Atlantic waters into the Arctic Ocean to the north of Norway and Spitsbergen. [Credits: Ruther Curry of WHOI and Cecilie Mauritzen of Norwegian] Meteorological Institute]

North-Atlantic Drift Current turning into the Norwegian Current that brigs warm Atlantic waters into the Arctic Ocean to the north of Norway and Spitsbergen. [Credits: Ruther Curry of WHOI and Cecilie Mauritzen of Norwegian] Meteorological Institute]

But wait a minute, how can this be? We all learn in school that warm air rises because it is less dense. We all know that oil floats on water, because it is less dense. Well, the warm Atlantic water is also salty, very salty, while the colder waters that cover it up are fresher, because many larger Siberian rivers enter the Arctic Ocean, ice melted the previous summer, and fresher Pacific waters enter also via Bering Strait. So, the saltier and more dense Atlantic water sinks below the surface and a colder fresher layer of water above it acts as a insolation blanket that limits the amount of ocean heat in contact with the ice above. Without this blanket, there would be no ice in the Arctic Ocean and the climate everywhere on earth would change because the ocean circulation would change also in an ice-free Arctic Ocean, but this is unlikely to happen anytime soon.

A single profile of temperature and salinity from an ice-tethered profile (ITP-74) off Siberia in July 2014. Note the warm Atlantic water below 150 meter depth.

A single profile of temperature and salinity from an ice-tethered profile (ITP-74) off Siberia in July 2014. Note the warm Atlantic water below 150 meter depth.

Some wonderful and new science and engineering gives us a new instant perspective on how temperature and salinity change over the top 700 meters of the Arctic Ocean every 6 hours. Scientists and engineers at the Woods Hole Oceanographic Institution with much support from American tax-payers keep up many buoys that float with the ice, measure the oceans below, and send data back via satellites overhead to be posted for all to see on the internet. Over the last 10 years these buoys provide in stunning detail how the Arctic Ocean has changed at some locations and has been the same at other locations. I used these data in an experimental class for both undergraduate and graduate students to supplement often dry lecture material with more lively and noisy workshops where both I and the students learn in new ways as the data are new … every day.

For well over 50 years the Soviet Union maintained stations on drifting Arctic sea ice that stopped when its empire fell apart in 1991. Russia restarted this program in 2003, but unlike the US-funded automated buoys, the Russian-funded manned stations do not share their data openly. No climate change here …

A Short Summary of Nares Strait Physics

The Arctic Ocean is a puddle of water covered by ice that melts, moves, and freezes. Grand and majestic rivers of Siberia and America discharge into the puddle and make it fresher than Atlantic Ocean waters. The fate of the Arctic freshwater helps decide if Europe and the US become warmer or colder, experience more or less storms, droughts, or floods, and if global sea level will rise or fall. In a nutshell: the fate of Arctic freshwater determines climate.

Arctic Ocean with Nares Strait study area (red box) with tide gauge locations as blue symbols and section of moored array as red symbol. Contours are bottom topography that emphasize ocean basins and continental shelf areas.

Arctic Ocean with Nares Strait study area (red box) with tide gauge locations as blue symbols and section of moored array as red symbol. Contours are bottom topography that emphasize ocean basins and continental shelf areas.

Nares Strait connects the Arctic and Atlantic Oceans to the west of Greenland. It is narrower than Fram Strait, but it transports as much fresh ocean water as does its wider sister facing Europe. Few people know this, including climate scientists who often model it with a bathymetry that is 10,000 years out of date from a time when Nares Strait did not yet exist. This is why the US National Science Foundation funded a group of oceanographers to use icebreakers, sensors, computers, and innovative engineering to collect and analyze data on the ice, the water, and the atmosphere.

Acoustic Doppler Current Profiler mooring deployment in Nares Strait from aboard the CCGS Henry Larsen in 2009.

Acoustic Doppler Current Profiler mooring deployment in Nares Strait from aboard the CCGS Henry Larsen in 2009.

Within days of the start of the grant I had to appear before the US Congress to answer questions on Petermann Glacier that discharges into Nares Strait. In 2010 a large 4-times Manhattan-sized ice islands broke off and people wanted to know if global warming was to blame. I was asked how ocean temperatures and currents relate to this and other events and what may happen next. My few data points were the only existing data for this remote region, but I had not yet had the time to analyze and publish much. Two years later another large 2-Manhattan sized ice island formed from the same glacier, but this time we were better prepared and people world-wide went directly to our data, thoughts, and stories when this blog was sourced in news papers in France, Germany, and China. Al Jezeraa, BBC, and PBS reported on it, too, giving me chance to connect via TV, radio, and pod-casting to a larger public.

Petermann Gletscher in 2003, 2010, and 2012 from MODIS Terra in rotated co-ordinate system with repeat NASA aircraft overflight tracks flown in 2002, 2003, 2007, and 2010. Thick black line across the glacier near y = -20 km is the grounding line location from Rignot and Steffen (2008).

Petermann Gletscher in 2003, 2010, and 2012 from MODIS Terra in rotated co-ordinate system with repeat NASA aircraft overflight tracks flown in 2002, 2003, 2007, and 2010. Thick black line across the glacier near y = -20 km is the grounding line location from Rignot and Steffen (2008).

While it was exciting and fun to share Nares Strait and Petermann Gletscher physics with a global audience, it is not what we had planned to do. Our goal was to put real numbers to how much water, ice, and freshwater was moving from the Arctic to the Atlantic via Nares Strait. So the next 3 years we labored through our extensive records to first describe and then to understand what was happening in Nares Strait. We found that ocean currents move water always to the south no matter if ice covers Nares Strait or not, no matter if the ice is moving or not, no matter which way the wind is blowing. The physical cause for this southward flow is that the sea level is always a few inches higher in the Arctic Ocean than it is in Baffin Bay and the Atlantic Ocean to the south.

Linear regression of volume flux  through Nares Strait from current meters with along-strait sea level difference from tide gauges (unpublished).

Linear regression of volume flux through Nares Strait from current meters with along-strait sea level difference from tide gauges. (unpublished).

We know, because we measured this with tide gauges that we placed in protected coastal bays. We recovered 3 sensors; most rewarding was the recovery of one sensor that we had failed to reach in 2005, 2006, 2007, and 2009, but in 2012 we finally got the instrument and 9-years of very good data. Batteries and computers inside were still running and recording. I have never seen as clean and as long a time series.

Results from a 2003-12 tide record shows as power spectra with named tidal constituents at diurnal (~24 hours) and semi-diurnal (~12 hours) periods. The red line is a modeled red noise spectra (unpublished).

Results from a 2003-12 tide record shown as a power spectra with named tidal constituents at diurnal (~24 hours) and semi-diurnal (~12 hours) periods. Data are shown as the relative amplitudes of oscillations at frequencies in cycles per day or cpd. The red line is a modeled red noise spectra (unpublished).

From satellite data that we analyzed as part of this grant, we know when the ice moves and when it stops moving. The freeze-up of Nares Strait comes in one of three forms: 1. Ice stops moving in winter, because an ice barrier (ice arch or ice bridge) forms in the south that blocks all southward motion of ice; 2. only new and young ice moves southward, because an ice barrier forms in the north that blocks all entry of Arctic ice into Nares Strait; and 3. Arctic ice moves freely through Nares Strait, because no ice barriers are present. Our 2003-12 study period covers years for each of these different ice regimes. And each of these regimes leads to very different ocean (and ice) flux as a result of very different ocean physics.

Data alone cannot make definite statements on what will happen next with our climate, but we know much new physics. The physics suggest certain balances of forces and energy for which we have mathematical equations, but these equations must be solved on computers that can only approximate the true physics and mathematics. These computer models are our only way to make predictions ito the future. The data we here collected and our analyses provide useful checks on existing models and will guide improved models.

June-10, 2012 MODIS-Terra image showing location of moored array that was deployed in Aug. 2009 to be recovered in Aug. 2012.

June-10, 2012 MODIS-Terra image showing location of moored array that was deployed in Aug. 2009.

Johnson, H., Münchow, A., Falkner, K., & Melling, H. (2011). Ocean circulation and properties in Petermann Fjord, Greenland Journal of Geophysical Research, 116 (C1) DOI: 10.1029/2010JC006519

Münchow, A., Falkner, K., Melling, H., Rabe, B., & Johnson, H. (2011). Ocean Warming of Nares Strait Bottom Waters off Northwest Greenland, 2003–2009 Oceanography, 24 (3), 114-123 DOI: 10.5670/oceanog.2011.62

Münchow, A., Padman, L., & Fricker, H. (2014). Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012 Journal of Glaciology, 60 (221), 489-499 DOI: 10.3189/2014JoG13J135

Münchow, A., Falkner, K., & Melling, H. (2014). Baffin Island and West Greenland Current Systems in northern Baffin Bay Progress in Oceanography DOI: 10.1016/j.pocean.2014.04.001

Rabe, B., Johnson, H., Münchow, A., & Melling, H. (2012). Geostrophic ocean currents and freshwater fluxes across the Canadian polar shelf via Nares Strait Journal of Marine Research, 70 (4), 603-640 DOI: 10.1357/002224012805262725

Surface Currents, Satellite Imagery, and Software

Technology is advancing at break neck speeds, and with the release of the iPhone 6, US culture seems more obsessed than ever with it.  All one has to do is observe any populated locale to notice the direct impact of the “smart” phone on pedestrians walking down the street or, heaven forbid, people driving cars inches away from said pedestrians.  So, computers dominate our lives (including mine), but as a graduate student of Physical Ocean Science and Engineering I am encouraged to push technological limits. Here is one example that will endanger no pedestrians:

Im_1Veloc_fieldIm_2

Recently, I was directed to a new MATLAB software package that compares pixel movement between two images taken at different times.  I applied this software to satellite imagery of the NE Greenland coastal shelf to identify surface currents from moving ice.  Two of the images above were taken by MODIS on August 18th (Left) and August 19th (Right), 2014.  The images show the surface of the coastal ocean near NE Greenland; white dots are pieces of ice.   The highlighted region in the middle figure shows a velocity field derived from these two days indicating ice motion towards the South.  Listed below is a larger version of the middle figure.

Veloc_field

What does this mean?  Well, based on the work of Falck (2001), this water is on its way from the Arctic Ocean. The surface water is relatively fresh, and as we move from fall to winter this water will cool and new ice will form quickly. Notice that the waters to right in the images are largely clear of ice and that it is this southward current that keeps the ice in a banded structure. This is not something the new iPhone 6 will help me with, but some of the software in the iPhone camera could prove helpful, as I may just have learned in a seminar on bubbles of air bursting from breaking waves.

Falck, E. (2001), Contribution of waters of Atlantic and Pacific origin in the Northeast Water Polynya. Polar Research, 20: 193–200. doi: 10.1111/j.1751-8369.2001.tb00056.x

East Greenland Current Instabilities

The coast off north-east Greenland is a grey, cloudy, and icy place. I spent 4 weeks on a ship earlier this summer to place sensors on the ocean floor to measure water currents, salinity, and temperature. The data shall uncover the mystery of how ocean heat 300 m below the surface gets to glaciers to melt them from below year round. My contribution is a small part of a larger effort by German, Norwegian, Danish, American, and British scientists to reveal how oceans change glaciers and how oceans impact Greenland’s ice sheet, climate, and weather.

So, for months now I am watching rather closely how this ocean looks from space. Usually it is cloudy with little exciting to see, but for 4 days this week the clouds broke and displayed a violently turbulent ocean worthy of a Van Gogh painting:

Satellite image ocean current instabilities on Aug.-19, 2014 as traced by ice along the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

Satellite image of ocean current instabilities on Aug.-19, 2014 as traced by ice along the the shelf break, red lines show 500, 750, and 1000 meter water depth. Small blue triangles top left are ocean moorings.

A wavy band of white near the red lines indicates the East Greenland Current. The red lines show where the water is 500, 750, and 1000 m deep. All waters to the left (west) of the red lines are shallow continental shelf while all waters to the right (east) are deep basin. Some islands and headlands of Greenland appear on the left of the image as solid grey. The image covers a distance about the same as from Boston to Washington, DC or London to Aberdeen, Scotland. Black areas are ocean that is clear of ice while the many shades of white and gray are millions of ice floes that act as particles moved about by the surface flow. Using a different satellite with much higher resolution shows these particles. The detail is from a tiny area to the north-west of the red circle near 77.5 North latitude:

Individual ice particles as seen on the north-east Greenland shelf from LandSat 15-m resolution from Aug.-21, 2014 near 77.5N and 10 W.

Individual ice particles as seen on the north-east Greenland shelf from LandSat 15-m resolution from Aug.-21, 2014 near 77.5N and 10 W.

Strongly white areas indicate convergent ocean surface currents that concentrate the loose ice while divergent ocean currents spread the ice particles out in filaments and swirls and eddies.

This is how many real fluids look like if one takes a snapshot as satellites do. Stringing such snapshots together, I show the fluid motion as comes to life for about 3 days:

Output

Notice how the large crests seaward of the red line between 74 and 75 North latitude grow and appear to break backward. This is an instability of the underlying East Greenland Current. It starts out as a small horizontal “wave,” but unlike the waves we watch at the beach, the amplitude of this “wave” is horizontal (east-west) and not vertical (up-down). The mathematics are identical, however, and this is the reason that I call this a wave. As the wave grows, it become steeper, and as it becomes too steep, it breaks and as it breaks, it forms eddies. These eddies then persist in the ocean for many weeks or months as rotating, swirling features that carry the Arctic waters of the East Greenland Current far afield towards the east. The East Greenland Current, however, continues southward towards the southern tip of Greenland. The wave and eddy processes observed here, however, weaken the current as some of its energy is carried away with the eddies.

I could not find any imagery like this in the scientific literature for this region, but similar features have been observed in similar ocean current systems that transport icy cold waters along a shelf break. The Labrador Current off eastern Canada shows similar instabilities as does the East Kamchatka Current off Russia in its Pacific Far East. And that’s the beauty of physics … they organize nature for us in ways that are both simple and elegant, yet all this beauty and elegance gives us complex patterns that are impossible to predict in detail.

Beszczynska-Möller, A., Woodgate, R., Lee, C., Melling, H., & Karcher, M. (2011). A Synthesis of Exchanges Through the Main Oceanic Gateways to the Arctic Ocean Oceanography, 24 (3), 82-99 DOI: 10.5670/oceanog.2011.59

LeBlond, P. (1982). Satellite observations of labrador current undulations Atmosphere-Ocean, 20 (2), 129-142 DOI: 10.1080/07055900.1982.9649135

Solomon, H., & Ahlnäs, K. (1978). Eddies in the Kamchatka Current Deep Sea Research, 25 (4), 403-410 DOI: 10.1016/0146-6291(78)90566-0

Of Moorings, Elephants, Norwegians, and Codswallop

The oceans are cruel, unforgiving, and destructive. Microbes, algae, plankton, fish, and whales all evolved slowly to make the seas their home. We men and women of science and technology race to catch-up Continue reading